首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein released by an invasive tumour cell line (SV28) was purified. It then had 20000 times the activity of serum in stimulating the migration of 3T3 cells. At each step in the purification there was a parallel activity that stimulated proliferation of 3T3 cells. The purified material was shown to stimulate proliferation of normal 3T3 cells at low serum concentrations where only transformed 3T3 cells proliferate and to stimulate the growth of 3T3 cultures to above their normal saturation density. The one substance could therefore account for the growth and the invasiveness of the SV28 cells. At limiting dilution of the protein only the cells along the edge of a wounded monolayer incorporate [3H]TdR. The significance of this edge effect to contact inhibition and the possible role of the diffusion boundary layer are discussed.  相似文献   

2.
3.
We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-beta 1,-2,-3, TGF-beta R1,-R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14 day after fracture. Our study of fracture repair of bone indicates that this process is complex and occurs through various steps involving various growth factors.  相似文献   

4.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

5.
6.
7.
Control of cell proliferation by Myc family genes   总被引:1,自引:0,他引:1  
  相似文献   

8.
Synergism between stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to be essential for hematopoietic cell proliferation. Since HML-2 cells proliferate exponentially in the presence of SCF and GM-CSF together, we analyzed the molecular mechanism of the interaction between these two factors in the cells. An immediate-early gene product, c-myc, was additively upregulated in HML-2 cells by addition of a combination of SCF and GM-CSF. c-myc antisense oligonucleotides effectively suppressed cell proliferation and downregulated the induction of D3, E, A, and B cyclins in HML-2 cells stimulated with the two-factor combination. HML-2 cells arrested at the G0/G1 phase with SCF alone and expressed modest amounts of c-myc and cyclin D3, but not cyclin E. With GM-CSF treatment alone, the cells could not progress to the G2/M phase and expressed c-myc, cyclin D3 and cyclin E but not cyclins A or B. The addition of the counterpart cytokine resulted in cell cycle completion by induction of the deficient cyclins. Taken together, it appears that the induction of c-myc is an indispensable event in the proliferation of HML-2 cells and that the cytokines SCF and GM-CSF interact reciprocally for expression of all cyclins required for cell cycle progression.  相似文献   

9.
A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Summary The DAUDI lymphoblast cell line derived from a patient with Burkitt lymphoma was obtained from two different sources. One of these (DAUDI-I) produced a factor that inhibited lymphocyte proliferation in both human and mouse regardless of the stimulator, i.e. allogeneic lymphocytes or mitogens. Glutaraldehyde treatment eliminated production of the factor and demonstrated that DAUDI-I was capable of stimulating normal lymphocytes in MLR. A second DAUDI cell line (DAUDI-S) did not produce the inhibitory factor and was capable of MLR stimulation. Supported by the Children's Leukemia Foundation of Michigan, NIH Grants AI 11013 and AI 11335, and the Kidney Foundation of Michigan.  相似文献   

11.
The DAUDI lymphoblast cell line derived from a patient with Burkitt lymphoma was obtained from two different sources. One of these (DAUDI-I) produced a factor that inhibited lymphocyte proliferation in both human and mouse regardless of the stimulator, i.e. allogeneic lymphocytes or mitogens. Glutaraldehyde treatment eliminated production of the factor and demonstrated that DAUDI-I was capable of stimulating normal lymphocytes in MLR. A second DAUDI cell line (DAUDI-S) did not produce the inhibitory factor and was capable of MLR stimulation.  相似文献   

12.
Present understanding of the control of animal cell proliferation is summarized briefly. Major gaps in present knowledge are listed. Models of growth control are discussed.  相似文献   

13.
The electric surface charge configuration of 3T3 and SV40-3T3 cells was characterized by determining the product of electrophoretic mobility of the cells times the viscosity of suspension medium. This quantity could be shown to change with temperature and/or treatment with calf serum or trypsin in close correlation with the effects of these agents on characteristics of cell proliferation. The present results, taken together with those of earlier studies on cell-electrophoresis and characterization of lipid constituents of the cells, support the hypothesis of a lateral phase separation in the plasmamembrane as triggering process in stimulation of proliferation of resting normal cells.  相似文献   

14.
Control of 3T3 cell proliferation by calcium   总被引:12,自引:0,他引:12  
Summary When a population of 3T3 mouse cells was subcultured regularly at confluency, the original epitheliodid or stellate cells disappeared and, by the ninth passage, they had been replaced by spindle-shaped cells. The original cells proliferated only when the extracellular calcium concentration exceeded 0.1mm, and their proliferative activity became maximum only when the calcium concentration was 0.5mm. The spindle-shaped cells were much more sensitive to proliferative stimulation by calcium. Although these cells also could not proliferate without extracellular ionic calcium, they proliferated maximally in the presence of as little as 0.05mm calcium. Thus, calcium is a major regulator of the proliferation of 3T3 mouse cells. Moreover, it appears that the sensitivity of the proliferative machinery to the calcium ion can vary greatly within an established cell line.  相似文献   

15.
Control of mammalian cell proliferation   总被引:5,自引:0,他引:5  
  相似文献   

16.
17.
The proliferation of normal mammalian cells, similar to that of single bacterial and lower eukaryotic cells, is restricted by space and nutrients. Cultured human lung fibroblasts have been used as a model to show that, in the absence of spatial restrictions, the requirement for specific nutrients limits normal cell proliferation. Serum-derived hormonelike growth factors transiently reduce the requirement for Ca2+, K+, Mg2+, phosphate ions, and 2-oxocarboxylic acids for normal cell proliferation. Oncogenic transformation by virus causes a constitutive reduction in the requirement for multiple nutrients for proliferation. A constitutive reduction in the proliferative requirement for Ca2+, K+, and Mg2+ allows transformed cells to escape the restrictions imposed on normal cell growth by suboptimal external concentrations of Ca2+, K+, Mg2+, and hormonelike growth factors. An understanding of the processes that determine the nutrient requirements of different normal cell types and their alteration by hormonelike growth factors and oncogenic agents is needed to understand and suppress the growth advantage possessed by malignant cells.  相似文献   

18.
19.
Tumour cells possess the cell surface protease guanidinobenzoatase (GB) which can be located by the fluorescent probe 9-amino acridine (9-AA). Frozen sections and formaldehyde fixed sections of tumour tissue were used to demonstrate the interactions between GB, 9-AA and two protein inhibitors of GB. A cytoplasmic extract from the tumour tissue, and a purified inhibitor of plasminogen activator (PAI-1) were shown to be exchangeable components of the enzyme-inhibitor complex on the fixed tumour cell surfaces. The evidence suggests that GB is functionally very similar to plasminogen activator and that this enzyme can be regulated by protein inhibitors in vivo and also by changes in the redox potential at the cell surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号