首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminin is a potent stimulator of neurite outgrowth in a variety of primary neurons and neuronal cell lines. Here, we investigate the role of nitric oxide in the signaling mechanism of laminin-mediated neurite outgrowth in the PC12 cell line. Within 8 s of exposure to laminin, PC12 cells produce nitric oxide. Peak laminin-induced nitric oxide levels reach 8 nM within 12 s of exposure to laminin and constitutive nitric oxide production is sustained for 1 min. A neurite outgrowth promoting synthetic peptide (AG73), derived from the laminin-1-alpha globular domain, also stimulated nitric oxide release. The nitric oxide synthase inhibitor, 1-NAME, prevents the formation of nitric oxide and here, 1-NAME inhibited both laminin-mediated and AG73-mediated neurite outgrowth by 88 and 95%, respectively. In contrast, C16, a synthetic peptide derived from the laminin-1-gamma chain, is shown here to promote PC12 cell attachment, but not neurite outgrowth. Interestingly, the C16 peptide did not activate nitric oxide release, suggesting that laminin-induced nitric oxide release in PC12 cells is associated only with neurite outgrowth promoting laminin domains and signals. In addition, the data here show that the nitric oxide released by PC12 cells in response to laminin is required as a part of the mechanism of laminin-mediated neurite outgrowth.  相似文献   

2.
Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3,5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). -Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP.  相似文献   

3.
4.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   

5.
SIRT1, a NAD+-dependent protein deacetylase, is known to have neural functions. However, despite its cytoplasmic expression in some neural cells, its cytoplasmic function, if any, is unknown. Here we found that PC12 (pheochromocytoma) cells expressed SIRT1 in the cytoplasm. Nerve growth factor (NGF)-induced neurite outgrowth of these cells was promoted by activators of SIRT1, while inhibitors of SIRT1 or SIRT1-siRNA significantly inhibited it. The overexpression of a mutant SIRT1 that localised to the cytoplasm but not the nucleus enhanced the NGF-dependent neurite outgrowth, and a cytoplasmic dominant-negative SIRT1 suppressed it. Thus, cytoplasmic SIRT1 increases the NGF-induced neurite outgrowth of PC12 cells.  相似文献   

6.
7.
通过观察不同营养状况下NGF诱导PC12细胞发生周期阻滞过程中p53蛋白水平的变化,探讨p53在PC12细胞周期阻滞中可能的作用机制.用流式细胞术检测细胞周期;Western blot检测p53和p21^WAF1/CIP蛋白水平.结果显示1%FBS(Fatal Bovine Serum)和50ug/L NGF(Nerve Growth Factor)均可诱导PC12细胞发生细胞周期阻滞.在10%FBS 50ug/L NGF处理的细胞中,p53和p21^WAF1/CIP1均增高,而使用MEK抑制剂U0126(10umol/L)可以抑制这一增高.在1%FBS处理的细胞中,p53水平增高,p21^WAF1/CIP1却未见明显增高;进而加入50ug/L NGF作用1h后,p53显著降低,6h后再次升高,并持续至24h.可见p53在50ug/L NGF和1%FBS诱导的细胞周期阻滞中均发挥作用,但作用机制可能不同.  相似文献   

8.
SHPS-1 is an immunoglobulin superfamily protein with four immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic region. Various neurotrophic factors induce the tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with the protein tyrosine phosphatase SHP-2. Using a yeast two-hybrid screen, we identified a protein tyrosine kinase, Csk-homologous kinase (CHK), as an SHPS-1-interacting protein. Immunoprecipitation and pull-down assays using glutathione S -transferase (GST) fusion proteins containing the Src homology 2 (SH2) domain of CHK revealed that CHK associates with tyrosine-phosphorylated SHPS-1 via its SH2 domain. HIS3 assay in a yeast two-hybrid system using the tyrosine-to-phenylalanine mutants of SHPS-1 indicated that the first and second ITIMs of SHPS-1 are required to bind CHK. Over-expression of wild-type CHK, but not a kinase-inactive CHK mutant, enhanced the phosphorylation of SHPS-1 and its subsequent association with SHP-2. CHK phosphorylated each of four tyrosines in the cytoplasmic region of SHPS-1 in vitro . Co-expression of SHPS-1 and CHK enhanced neurite outgrowth in PC12 cells. Thus, CHK phosphorylates and associates with SHPS-1 and is involved in neural differentiation via SHP-2 activation.  相似文献   

9.
《Free radical research》2013,47(2):95-103
Abstract

Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells.  相似文献   

10.
11.
Summary 1. Colostrinin (CLN) induces maturation and differentiation of murine thymocytes, promotes proliferation of peripheral blood leukocytes, induces immunomodulator cytokines, and ameliorates oxidative stress-mediated activation of c-Jun NH2-terminal kinases. 2. Here we report that upon treatment with CLN, medullary pheochromocytoma (PC12) cells ceased to proliferate and extend neurites. 3. The arrest of CLN-treated PC12 cells in the G1 phase of the cell cycle was due to an increase in the phosphorylation of p53 at serine15 (p53ser15) and expression of p21WAF1. PC12 cells treated with inhibitory oligonucleotides to p53 lacked p53ser15 and p21WAF1 expression, and did not show morphological changes after CLN exposure. Transfection with inhibitory oligonucleotides to p21WAF1 had no effect on p53 activation; however, cells failed to arrest or extend neurites. An oligonucleotide inhibiting luciferase expression had no effect on CLN-mediated p53 activation, p21WAF1 expression, growth arrest, or neurite outgrowth. 4. We conclude that CLN induces delicate cassettes of signaling pathways common to cell proliferation and differentiation, and mediates activities that are similar to those of hormones and neurotrophins, leading to neurite outgrowth.  相似文献   

12.
We obtained a drug-hypersensitive PC12 mutant cell (PC12m3), in which neurite outgrowth was strongly stimulated by various drugs such as FK506, calcimycin and cAMP, under the condition of NGF treatment. The frequency of neurite outgrowth stimulated by FK506 was approximately 40 times greater than by NGF alone. The effects of FK506 on neurite outgrowth in PC12m3 cells were inhibited by rapamycin, an FK506 antagonist, and by calcimycin, a calcium ionophore. PC12m3 cells had a strong NGF-induced MAP kinase activity, the same as PC12 parental cells. However, FK506-induced MAP kinase activity was detected only in PC12m3 cells. The activation of MAP kinase by FK506 in PC12m3 cells was markedly inhibited by rapamicin and calcimycin. FK506-induced MAP kinase activity was also inhibited by MAP kinase inhibitor U0126. These results demonstrate that drug-hypersensitive PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

13.
To determine the role of Dp71 in neuronal cells, we generated PC12 cell lines in which Dp71 protein levels were controlled by stable transfection with either antisense or sense constructs. Cells expressing the antisense Dp71 RNA (antisense-Dp71 cells) contained reduced amounts of the two endogenous Dp71 isoforms. Antisense-Dp71 cells exhibited a marked suppression of neurite outgrowth upon the induction with NGF or dibutyryl cyclic AMP. Early responses to NGF-induced neuronal differentiation, such as the cessation of cell division and the activation of ERK1/2 proteins, were normal in the antisense-Dp71 cells. On contrary, the induction of MAP2, a late differentiation marker, was disturbed in these cells. Additionally, the deficiency of Dp71 correlated with an altered expression of the dystrophin-associated protein complex (DAPC) members alpha and beta dystrobrevins. Our results indicate that normal expression of Dp71 is essential for neurite outgrowth in PC12 cells and constitute the first direct evidence implicating Dp71 in a neuronal function.  相似文献   

14.
A heparin/polypyrrole (PPy) composite, an electrical conducting polymer, was designed to enhance the interactions between a gold-coated matrix and nerve cells, with the cell (PC12 cells) interactions investigated under different conditions, both with and without electrical stimulation. The heparin concentration in the composites increased with increasing current density under the preparation condition, indicating that the heparin concentration in the composite could be controlled by managing the current density. Optical imaging showed that PC12 cells well attached to the PPy surfaces covered with heparin, but were poorly interacted to PPy surfaces without the heparin and gold coated matrix. The neurite length of the PC12 cells on the surfaces with an electrical stimulation (100 mV for 1h) significantly increased, with a median length of 77.5 μm; whereas, that without electrical stimulation was 10∼20 μm. Therefore, the heparin/polypyrrole (PPy) composite may provide insight for the development of an ideal nerve guidance channel.  相似文献   

15.
The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and EGF induce Rap1 activation in PC12-Shb cells, while FGF-2 fails to do so. However, PC12 cells expressing Shb with an inactivated SH2 domain do not respond to NGF stimulation with Rap1 activation. The CrkII SH2 domain interacts with Shb and a 130- to 135-kDa phosphotyrosine protein present mainly in PC12-Shb cells and these interactions may thus relate to the effect of Shb on Rap1 activation. Transient expression of RalGDS-RBD or Rap1GAP to block the Rap1 pathway reduces the NGF-dependent neurite outgrowth in PC12-Shb cells. These results suggest a role of Shb in NGF-dependent Rap1 signaling and this pathway may be of significance for neurite outgrowth under certain conditions.  相似文献   

16.
Senescence of the central nervous system is characterized by a progressive loss of neurons that can result in physiological and behavioral impairments. Reduction in the levels of central neurotrophic factors or of neurotrophin receptors may be one of the causes of the onset of these degenerative events. Thus, a proper therapeutic approach would be to increase support to degenerating neurons with trophic factors or to stimulate endogenous neurotrophic activity. Here we report that acetyl-l-carnitine arginine amide (ST-857) is able to stimulate neurite outgrowth in rat pheochromocytoma PC12 cells in a manner similar to that elicited by nerve growth factor (NGF). Neurite induction by ST-857 requires de novo mRNA synthesis and is independent of the action of several common trophic factors. The integrity of the molecular structure of ST-857 is essential for its activity, as the single moieties of the molecule have no effect on PC12 cells, whether they are tested separately or together. Also, minor chemical modifications of ST-857, such as the presence of the arginine moiety at a position other than the amino one, completely abolish its neuritogenic effect. Lastly, the presence of ST-857 in the culture medium competes with the high affinity NGF binding in a dose dependent fashion. These results, although preliminary, are suggestive of a possible role for ST-857 in the development of therapeutic strategies to counteract degenerative diseases of the CNS.  相似文献   

17.
18.
In the present study, we examined the effects of fluvoxamine on nerve growth factor (NGF)-induced neurite outgrowth inhibition by dexamethasone (DEX) in PC12 cells. Fluvoxamine increased NGF-induced neurite outgrowth. Compared with co-treatment with NGF and fluvoxamine, p-Akt levels were higher than the values without fluvoxamine. The phosphorylated extracellular regulated kinase 1/2 levels were slightly increased by co-treatment with NGF and fluvoxamine. Fluvoxamine concentration-dependently improved NGF-induced neurite outgrowth inhibition by DEX. Fluvoxamine also improved the decrease in the NGF-induced p-Akt level caused by DEX. Interestingly, the sigma-1 receptor antagonist NE-100 blocked the improvement effects of fluvoxamine on NGF-induced neurite outgrowth inhibition by DEX. The selective sigma-1 receptor agonist PRE-084 also improved NGF-induced neurite outgrowth inhibition by DEX, which is blocked by NE-100. These results indicate that the improvement effects of fluvoxamine on NGF-induced neurite outgrowth inhibition by DEX may be attributable to the phosphorylation of Akt and the sigma-1 receptor.  相似文献   

19.
We report here that a microbial extracellular glycolipid,mannosylerythritol lipid (MEL), induces the outgrowth ofneurites from and enhances the activity of acetylcholinesterase(AChE) in PC12 pheochromocytoma cells. Furthermore, treatment ofPC12 cells with MEL increased levels of galactosylceramide(Gal1-1Cer; GalCer). Exposure of PC12 cells to exogenous GalCer caused the dose-dependent outgrowth ofneurites. By contrast, treatment of PC12 cells with nerve growthfactor (NGF) did not increase the level of GalCer in the cells. The neurite-related morphological changes induced by GalCerdifferend from those induced by NGF, indicating differencesbetween the signal transduction pathways triggered by NGF and by GalCer.Both authors contributed equally to this work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号