首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of Kym-1 rhabdomyosarcoma cells depends on endogenous receptor tyrosine kinase signals activated by insulin and insulin-like growth factors (IGF), as revealed from enhancement of proliferation by insulin and IGF-1 and cytostatic action of inhibitors of IR/IGFR kinases. Depending on the presence or absence of the caspase inhibitor z-VAD-fmk, TNF induced full growth arrest or apoptosis, respectively, indicating dominance of TNF over mitogenic signal pathways in Kym-1 cells. In accordance with a caspase-independent cytostatic action, TNF downregulated IR kinase activity and caused a profound inhibition of downstream mitogenic signals including the MAPK cascade and STAT5, key pathways of proliferation and cell survival. Removal of z-VAD-fmk after 24 h induced rapid cell death in the absence of TNF. The inhibition of survival signals concomitant with persisting proapoptotic signals may tip the balance towards an irreversible commitment of the cell to apoptosis that becomes apparent upon relief of suppression of effector caspases.  相似文献   

2.
3.
Experimental evidence is presented that supports a cell cycle model showing that there are five distinct biological processes involved in proadipocyte differentiation. These include: (a) growth arrest at a distinct state in the G1 phase of the cell cycle; (b) nonterminal differentiation; (c) terminal differentiation; (d) loss of the differentiated phenotype; and (e) reinitiation of cell proliferation. Each of these events is shown to be regulated by specific human plasma components or other physiological factors. At two states designated GD and GD', coupling of growth arrest and differentiation is shown to occur. We propose that these mechanisms for the coupling of growth arrest and differentiation are physiologically significant and mimic the regulatory processes that control stem cell proliferation in vivo.  相似文献   

4.
5.
The autophagosomal-lysosomal compartment in programmed cell death   总被引:19,自引:0,他引:19  
In the last decade a tremendous progress has been achieved in understanding the control of apoptosis by survival and death factors as well as the molecular mechanisms of preparation and execution of the cell's suicide. However, accumulating evidence suggests that programmed cell death (PCD) is not confined to apoptosis but that cells use different pathways for active self-destruction as reflected by different morphology: condensation prominent, type I or apoptosis; autophagy prominent, type II; etc. Autophagic PCD appears to be a phylogenetically old phenomenon, it may occur in physiological and disease states. Recently, distinct biochemical and molecular features have been be assigned to this type of PCD. However, autophagic and apoptotic PCD should not be considered as mutually exclusive phenomena. Rather, they appear to reflect a high degree of flexibility in a cell's response to changes of environmental conditions, both physiological or pathological. Furthermore, recent data suggest that diverse or relatively unspecific signals such as photodamage or lysosomotropic agents may be mediated by lysosomal cysteine proteases (cathepsins) to caspases and thus, apoptosis. The present paper reviews morphological, functional and biochemical/molecular data suggesting the participation of the autophagosomal-lysosomal compartment in programmed cell death.  相似文献   

6.
Insulin-like growth factor-I (IGF-I) was found to promote proliferation, cell survival, and inhibition of apoptosis. But in some instances, IGF-I was found to mildly induce apoptosis, i. e. Fas-mediated apoptosis in human MG63 osteosarcoma cells. In the present study, we intended to further investigate IGF-I dependent pathways leading either to proliferation and cell survival or to cell death. MG63 osteosarcoma cells were treated with serum free medium alone or in combination with IGF-I, a neutralizing antibody against the human IGF-I receptor (alphaIR-3) or non-immune control IgG (1) for two to six days. We investigated cell survival (cell count), proliferation (CD71-FACS), apoptosis (Annexin-V-FACS, Caspase-3 activity, PCD) and anti-apoptosis (112-Ser Bad phosphorylation), and regulation of IGF-I receptor surface expression (IGF-I receptor-FACS). We found that IGF-I treatment (48 h) stimulated cell growth and proliferation, but also mildly induced apoptosis. IGF-I activated specific apoptotic pathways (Caspase-3 activation, Annexin-V binding and DNA degradation), as well as anti-apoptotic signals (Bad phosphorylation at serine 112). alphaIR-3 blocked cell proliferation, strongly induced apoptosis, and inhibited Bad-phosphorylation. Thus, IGF-I treatment overall resulted in increased tumour cell mass, despite a detectable stimulation of apoptosis; in other words proliferation exceeded cell death. If IGF-I was first added on day 0, 2, or 4 of serum free culture, we found decreasing IGF-I specific effects on proliferation and apoptosis. In parallel, we found a down-regulation of IGF-I receptors (FACS) by serum withdrawal, which was partly reversed if IGF-I was added. Therefore receptor number might have an impact on IGF-I function in MG63 cells. In conclusion, co-activation of apoptosis and proliferation by IGF-I might result in higher cell turnover in MG63 osteosarcoma cells. Furthermore, in sarcomas or carcinomas showing clinical association to IGF-I levels and malignancy, IGF-I dependent apoptosis and proliferation could be a significant mechanism of malignant tumour growth.  相似文献   

7.
FoxO转录因子的活性调节及对哺乳动物细胞进程的调控   总被引:1,自引:0,他引:1  
FoxO转录因子在哺乳动物的细胞分化、增殖和细胞存活中发挥着重要调控作用,其转录活性受PI3K通路、非PI3K依赖通路、乙酰化和泛素化作用等多种途径调控.FoxO受到上游信号分子PI3K/Akt、SGK等的激活,调节靶基因的转录,从而调节哺乳动物细胞周期的进程和凋亡事件.FoxO已成为肿瘤、癌症科学研究的热点之一.  相似文献   

8.
Activation—induced cell death in B lymphocytes   总被引:10,自引:2,他引:8  
Upon encountering the antigen(Ag),the immune system can either develop a specific immune response of enter a specific state of unresponsiveness,tolerance.The response of B cells to their specific Ag can be activation and proliferation,leading to the immune response,or anergy and activation-induced cell death(AICD),leading to tolerance.AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR).BCR engagement initiates several signaling events such as activation of PLCγ,Ras,and PI3K,which generally speaking,lead to survival.However,in the absence of survival signals(CD40 or IL-4R engagement),BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases,expression of pro-apoptotic genes,and inhibition of pro-survival genes.The complex interplay between survival and death signals determines the B cell fate and, consequently,the immune response.  相似文献   

9.
Paradoxically, oncogenes and growth factors can induce proliferation and promote cellular survival but can also cause apoptosis and growth arrest. What determines whether a cell decides to proliferate, arrest growth, or die? Mitogens and activators of mitogen-activated pathways initiate the simultaneous production of proliferative (cyclins) and anti-proliferative (CDK inhibitors such as p21WAF1/CIP1) signals. Quiescent cells may respond to these signals by proliferation whereas proliferating cells may respond by growth arrest. Although pro-apoptotic oncoproteins, which constitute the downstream pathway (cyclin D, E2F, c-myc) directly induce proliferation, the activation of the upstream steps (growth factor receptors, Ras, cytoplasmic kinases) is required to prevent apoptosis. BioEssays 21:704–709, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

10.
The Drosophila retina has a precise repeating structure based on the unit eye, or ommatidium. This review summarizes studies of the cell proliferation and survival episodes that affect the number of cells available to make each ommatidium. Late in larval development, as differentiation and patterning begin, the retinal epithelium exhibits striking regulation of the cell cycle including a transient G1 arrest of all cells, followed by a "Second Mitotic Wave" cell cycle that is regulated at the G2/M transition by local intercellular signals. Reiterated episodes of cell death also contribute to precise regulation of retinal cell number. The EGF receptor homolog has multiple roles in retinal proliferation and survival.  相似文献   

11.
The mammary gland is a developmentally dynamic, hormone-responsive organ that undergoes proliferation and differentiation within the secretory epithelial compartment during pregnancy. The epithelia are maintained by pro-survival signals (e.g., Stat5, Akt1) during lactation, but undergo apoptosis during involution through inactivation of cell survival pathways and upregulation of pro-apoptotic proteins. To assess if the survival signals in the functionally differentiated mammary epithelial cells can override a pro-apoptotic signal, we generated transgenic mice that express Bax under the whey acidic protein (WAP) promoter. WAP-Bax females exhibited a lactation defect and were unable to nourish their offspring. Mammary glands demonstrated: (1) a reduction in epithelial content, (2) hallmark signs of mitochondria-mediated cell death, (3) an increase in apoptotic cells by TUNEL assay, and (4) precocious Stat3 activation. This suggests that upregulation of a single pro-apoptotic factor of the Bcl-2 family is sufficient to initiate apoptosis of functionally differentiated mammary epithelial cells in vivo.  相似文献   

12.
Early neural cell death: dying to become neurons   总被引:1,自引:0,他引:1  
The importance of programmed cell death (PCD) during vertebrate development has been well established. During the development of the nervous system in particular, neurotrophic cell death in innervating neurons matches the number of neurons to the size of their target field. However, PCD also occurs during earlier stages of neural development, within populations of proliferating neural precursors and newly postmitotic neuroblasts, all of which are not yet fully differentiated. This review addresses early neural PCD, which is distinct from neurotrophic death in differentiated neurons. Although early neural PCD is observed in a range of organisms, from Caenorhabditis elegans to mouse, the role and the regulation of early neural PCD are not well understood. The regulation of early neural PCD can be inferred from the function of factors such as bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors (FGFs), and Sonic Hedgehog (Shh), which regulate both early neural development and PCD occurring in other developmental processes. Cell number control, removal of damaged or misspecified cells (spatially or temporally), and selection are the proposed roles early neural PCDs play during neural development. Data from developmental PCD in C. elegans and Drosophila provide insights into the possible signaling pathways integrating PCD with other processes during early neural development and the roles they might play.  相似文献   

13.
何艳  刘静 《生命科学》2010,(5):411-415
细胞衰老是细胞脱离细胞周期并不可逆地丧失增殖能力后进入的一种相对稳定的状态,虽然基本代谢过程仍然能够维持,但丧失合成DNA及增殖能力。细胞衰老具有复制衰老、癌基因诱导的衰老及加速衰老等类型。衰老细胞具有细胞体积大而扁平、细胞停止分裂及SA-β-gal反应阳性等明显特性,复制衰老还具有端粒缩短到无法维持染色体结构完整性的特征。目前已知,p53-p21和p16-pRB在细胞衰老过程中起着重要的调控作用,细胞衰老对肿瘤的形成起着天然的屏障作用。通过抑制端粒酶活性来诱导肿瘤细胞衰老和通过胞外刺激或化学治疗药物诱导肿瘤细胞发生衰老样生长停滞,已成为抗肿瘤研究的新思路。  相似文献   

14.
Programmed cell death in cell cultures   总被引:21,自引:0,他引:21  
In plants most instances of programmed cell death (PCD) occur in a number of related, or neighbouring, cells in specific tissues. However, recent research with plant cell cultures has demonstrated that PCD can be induced in single cells. The uniformity, accessibility and reduced complexity of cell cultures make them ideal research tools to investigate the regulation of PCD in plants. PCD has now been induced in cell cultures from a wide range of species including many of the so-called model species. We will discuss the establishment of cell cultures, the fractionation of single cells and isolation of protoplasts, and consider the characteristic features of PCD in cultured cells. We will review the wide range of methods to induce cell death in cell cultures ranging from abiotic stress, absence of survival signals, manipulation of signal pathway intermediates, through the induction of defence-related PCD and developmentally induced cell death.  相似文献   

15.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

16.
Bai S  Li M  Yao T  Wang H  Zhang Y  Xiao L  Wang J  Zhang Z  Hu Y  Liu W  He Y 《Nitric oxide》2012,26(1):54-60
Nitric oxide (NO) participates in the regulation of diverse functions in plant cells. However, different NO concentrations may trigger different pathways during the plant development. At basal levels of NO, plants utilize the NO signaling transduction pathway to facilitate plant growth and development, whereas higher concentrations trigger programmed cell death (PCD). Our results show that NO lower than the levels causing PCD, but higher than the basal levels induce DNA damage in root cells in Arabidopsis as witnessed by a reduction in root growth, rather than cell death, since cells retain the capacity to differentiate root hairs. The decrease in meristematic cells and increase in DNA damage signals in roots in responses to NO are in a dose dependent manner. The restraint of root growth is due to cell cycle arrest at G1 phase which is caused by NO induced DNA damage, besides a second arrest at G2/M existed in NO supersensitive mutant cue1. The results indicate that NO restrain root growth via DNA damage induced cell cycle arrest.  相似文献   

17.
Following DNA damage, cells display complex multi‐pathway signaling dynamics that connect cell‐cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell‐cycle re‐entry and proliferation, permanent cell‐cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time‐resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin‐induced DNA damage in the presence or absence of TNFα co‐treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell‐cycle regulatory responses. Two relational modeling approaches were then used to identify network‐level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term ‘time‐interval stepwise regression.’ Taken together, the results from these analysis methods revealed complex, cytokine‐modulated inter‐relationships among multiple signaling pathways following DNA damage, and identified an unexpected context‐dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug.  相似文献   

18.
The Drosophila retina has a precise repeating structure based on the unit eye, or ommatidium. This review summarizes studies of the cell proliferation and survival episodes that affect the number of cells available to make each ommatidium. Late in larval development, as differentiation and patterning begin, the retinal epithelium exhibits striking regulation of the cell cycle including a transient G1 arrest of all cells, followed by a ‘Second Mitotic Wave’ cell cycle that is regulated at the G2/M transition by local intercellular signals. Reiterated episodes of cell death also contribute to precise regulation of retinal cell number. The EGF receptor homolog has multiple roles in retinal proliferation and survival.  相似文献   

19.
Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and-independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.  相似文献   

20.
Sugimoto A  Kusano A  Hozak RR  Derry WB  Zhu J  Rothman JH 《Genetics》2001,158(1):237-252
To identify genes involved in programmed cell death (PCD) in Caenorhabditis elegans, we screened a comprehensive set of chromosomal deficiencies for alterations in the pattern of PCD throughout embryonic development. From a set of 58 deficiencies, which collectively remove approximately 74% of the genome, four distinct classes were identified. In class I (20 deficiencies), no significant deviation from wild type in the temporal pattern of cell corpses was observed, indicating that much of the genome does not contain zygotic genes that perform conspicuous roles in embryonic PCD. The class II deficiencies (16 deficiencies defining at least 11 distinct genomic regions) led to no or fewer-than-normal cell corpses. Some of these cause premature cell division arrest, probably explaining the diminution in cell corpse number; however, others have little effect on cell proliferation, indicating that the reduced cell corpse number is not a direct result of premature embryonic arrest. In class III (18 deficiencies defining at least 16 unique regions), an excess of cell corpses was observed. The developmental stage at which the extra corpses were observed varied among the class III deficiencies, suggesting the existence of genes that perform temporal-specific functions in PCD. The four deficiencies in class IV (defining at least three unique regions), showed unusually large corpses that were, in some cases, attributable to extremely premature arrest in cell division without a concomitant block in PCD. Deficiencies in this last class suggest that the cell death program does not require normal embryonic cell proliferation to be activated and suggest that while some genes required for cell division might also be required for cell death, others are not. Most of the regions identified by these deficiencies do not contain previously identified zygotic cell death genes. There are, therefore, a substantial number of as yet unidentified genes required for normal PCD in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号