首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of purified (80,000-fold) human leukocyte inhibitory factor (LIF) to modulate several formyl-methionyl-leucyl-phenylalanine (f-met-leu-phe)-induced neutrophil functions was evaluated. Although not affecting directed migration itself, at low concentrations (1/2 to 2 U/ml), LIF was demonstrated to potentiate chemotaxis induced by f-met-leu-phe (40.3% +/- 8.1) and to reduce the concentration of f-met-leu-phe necessary for maximal chemotaxis (10(-8) to 10(-9) M). Similarly, LIF did not directly induce the respiratory burst, but potentiated both superoxide generation (151.6% +/- 77) and hydrogen peroxide production (54.9% +/- 15.5) in the presence of f-met-leu-phe (10(-7) M). LIF was also shown to induce degranulation of neutrophil-specific granules in a dose-dependent manner. Neutrophil-specific granules have been shown to contain an intracellular pool of receptors for f-met-leu-phe, and on degranulation provide the surface membrane with a fresh source of receptors. Our data suggested that LIF potentiation of neutrophil stimulation by f-met-leu-phe might be mediated, at least in part, by increasing the number of available membrane receptors as a result of its ability to induce degranulation. Radioligand receptor analysis using f-met-leu-[3H] phe was performed, and LIF was shown to mediate an increase in receptors for f-met-leu-phe from an average of 18,600 on untreated cells to 27,000 after pretreatment with LIF. This increase in receptors could "sensitize" the neutrophils for f-met-leu-phe and possibly explain the potentiation of neutrophil stimulation observed in the presence of the ligand. LIF was also found to have a more generalized effect on the transduction of neutrophil activation stimuli, mediating a 35.8% increase in superoxide production after exposure to calcium ionophore. The data do not permit a determination as to whether the increase in receptor number is responsible for the potentiation of f-met-leu-phe-mediated function, or whether this occurs secondary to the more generalized effect on neutrophil stimulation transduction.  相似文献   

2.
Histamine inhibited the production of interferon-gamma and interleukin 2 (IL-2) induced in human peripheral blood mononuclear cells by Staphylococcal Enterotoxin A (SEA) but had no effect on the expression of IL-2 receptors. The effects on lymphokine production were dose dependent with maximal inhibition occurring at histamine concentrations of 10(-4) to 10(-6) M. The H2-agonist 4-methylhistamine but not the H1-agonist 2-methylhistamine modulated lymphokine production in a similar manner as histamine. Histamine at concentrations of 10(-3) to 10(-8) M had no inhibitory effect directly on the activity of admixed IL-2 containing medium. The inhibitory effects of histamine could be reversed by the H2-antagonist cimetidine but not by the H1-antagonist diphenhydramine. This indicates that the inhibitory effects of histamine on lymphokine production are mediated through H2-receptors on mononuclear cells.  相似文献   

3.
Using histamine and the H3 receptor antagonist thioperamide, the roles of histamine receptors in NMDA-induced necrosis were investigated in rat cultured cortical neurons. Within 3 h of intense NMDA insult, most neurons died by necrosis. Histamine reversed the neurotoxicity in a concentration-dependent manner and showed peak protection at a concentration of 10(-7) m. This protection was antagonized by the H2 receptor antagonists cimetidine and zolantidine but not by the H1 receptor antagonists pyrilamine and diphenhydramine. In addition, the selective H2 receptor agonist amthamine mimicked the protection by histamine. This action was prevented by cimetidine but not by pyrilamine. 8-Bromo-cAMP also mimicked the effect of histamine. In contrast, both the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine and the cAMP-dependent protein kinase inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide reversed the protection by histamine. Thioperamide also attenuated NMDA-induced excitotoxicity, which was reversed by the H3 receptor agonist (R)-alpha-methylhistamine but not by pyrilamine and cimetidine. In addition, the protection by thioperamide was inhibited by the GABA(A) receptor antagonists picrotoxin and bicuculline. Further study demonstrated that the protection by thioperamide was due to increased GABA release in NMDA-stimulated samples. These results indicate that not only the H2 receptor/cAMP/cAMP-dependent protein kinase pathway but also the H3 receptor/GABA release pathway can attenuate NMDA-induced neurotoxicity.  相似文献   

4.
J Bugajski  Z Janusz 《Life sciences》1983,33(12):1179-1189
In conscious rats histamine, the H1-receptor agonist 2-pyridylethylamine (PEA), and the H2-receptor agonists dimaprit and impromidine given intracerebroventriculary (i.c.v.) increased the hypophyseal-adrenocortical response, evaluated indirectly through the corticosterone concentration in the blood serum. On a molar basis histamine was the most potent drug whereas its agonists were less potent in inducing an increased corticosterone response. Impromidine however, was far more active than dimaprit and PEA. The effect of histamine was significantly yet not totally antagonized by either mepyramine, a H1-receptor antagonist, or cimetidine, a H2-receptor blocker. The combination of mepyramine and cimetidine caused a considerably stronger inhibition than that induced by either antagonist given separately. Mepyramine impaired the corticosterone response to PEA, and the responses to impromidine and dimaprit were significantly diminished by cimetidine. The results suggest that i.c.v. histamine increases the pituitary-adrenocortical activity via both H1- and H2-receptors, and there seems to be no significant prevalence of either of these receptors in mediating this action of histamine.  相似文献   

5.
Eosinophils are recruited to sites of inflammation via the action of a number of chemical mediators, including PAF, leukotrienes, eotaxins, ECF-A and histamine. Although many of the cell-surface receptors for these mediators have been identified, histamine-driven chemotaxis has not been conclusively attributed to any of the three known histamine receptor subtypes, suggesting the possibility of a 4th histamine-responsive receptor on eosinophils. We have identified and cloned a novel G protein-coupled receptor (GPCR), termed Pfi-013, from an IL-5 stimulated eosinophil cDNA library which is homologous to the human histamine H3 receptor, both at the sequence and gene structure level. Expression data indicates that Pfi-013 is predominantly expressed in peripheral blood leukocytes, with lower expression levels in spleen, testis and colon. Ligand-binding studies using Pfi-013 expressed in HEK-293Galpha15 cells, demonstrates specific binding to histamine with a Kd of 3.28 +/- 0.76 nM and possesses a unique rank order of potency against known histaminergic compounds in a competitive ligand-binding assay (histamine > clobenpropit > iodophenpropit > thioperamide > R-alpha-methylhistamine > cimetidine > pyrilamine). We have therefore termed this receptor human histamine H4. Chemotaxis studies on isolated human eosinophils have confirmed that histamine is chemotactic and that agonists of the known histamine receptors (H1, H2, and H3) do not induce such a response. Furthermore, studies employing histamine-receptor antagonists have shown an inhibition of chemotaxis only by the H3 antagonists clobenpropit and thioperamide. Since these compounds are also antagonists of hH4 we postulate that the receptor mediating histaminergic chemotaxis is this novel histamine H4 receptor.  相似文献   

6.
The effects of the administration into the brain ventricle of histamine, selective H1- and H2-receptor agonists and antagonists and chemically similar substances with nonspecific activity on basal and morphine-stimulated growth hormone (GH) secretion in normal male rats were studied. None of the drugs had any significant effect on baseline rat GH levels, but histamine and H1 agonists were able to decrease the rat GH release evoked by morphine. Mepyramine (H1 antagonist) had no consistent effect by itself but was effective in preventing the inhibitory action of 2-methylhistamine (H1 agonist). H2 agonists and antagonists and their chemical analogues were all inhibitory, but by a mechanism which is nonspecific and must be interpreted cautiously. These results confirm the inhibitory effect of histamine on rat GH release and indicate that H1 receptors in the CNS are responsible for this effect.  相似文献   

7.
Secretion of somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach has been shown to be inhibited by substance P. The present study was initiated to examine the possibility that this action of substance P was mediated via release of histamine. Substance P (1 microM) reduced basal secretion of SLI in agreement with earlier studies. Neither pyrilamine nor cimetidine influenced this action. Basal immunoreactive gastrin (IRG) secretion was unaffected by substance P. Addition of pyrilamine during substance P perfusion increased IRG secretion whereas addition of cimetidine resulted in a delayed decrease on removal of both compounds. Histamine (1 and 10 microM) increased SLI secretion and reduced IRG secretion. Pyrilamine increased and cimetidine decreased IRG secretion but neither drug influenced SLI secretion. Pyrilamine had no effect on histamine-stimulated SLI secretion but inhibition of IRG secretion by histamine was converted to stimulation. Cimetidine potentiated histamine stimulation of SLI secretion and inhibition of IRG secretion. In conclusion: (1) substance P inhibition of SLI secretion is unlikely to be mediated via release of histamine. (2) The gastrin cell appears to have both H1- and H2-receptors which mediate opposite actions but H1-receptor-mediated inhibition is predominant. (3) Histamine weakly stimulates SLI secretion but there may be both inhibitory and stimulatory pathways acting via H2- and H1-receptors, respectively.  相似文献   

8.
Histamine receptors are present on the surface of various normal and tumor-derived cell types, where their biological function is incompletely understood. Here we report that histamine not only stimulates cell proliferation under serum-free conditions, but also is chemotactic for human carcinoma (Hela and A431) and melanoma (A875) cells expressing H1 type receptors. Histamine was found to be a potent activator of phospholipase C, leading to polyphosphoinositide hydrolysis and subsequent intracellular Ca2+ mobilization. In addition, histamine also causes the protein kinase C-mediated activation of Na+/H+ exchange, as evidenced by an amiloride-sensitive rise in cytoplasmic pH. All histamine-induced responses, including chemotaxis and DNA synthesis, are completely inhibited by the H1 receptor antagonist pyrilamine, but not by cimetidine, an inhibitor of histamine H2 type receptors. Our results suggest that histamine may have a previously unrecognized role in the migration and proliferation of cells expressing H1 receptors.  相似文献   

9.
Histamine at concentrations of 1 x 10(-5) M to 5 x 10(-5) M consistently increased neutrophil movement as measured in Boyden chambers. This effect was entirely caused by stimulation of chemokinesis (stimulated random migration) and true chemotaxis was inhibited by these concentrations. This inhibition of chemotaxis could be abolished by pretreatment with metiamide, an H-2 receptor antagonist, and levamisole, but not by diphenylhydramine, an H-1 receptor antagonist. Metiamide at similar concentrations produced a mild stimulation of chemokinesis but has no effect on true chemotaxis. The histamine effects on neutrophil motility were associated with increased levels of intracellular cAMP wehreas cAMP levels were unaffected. Agents known to elevate intracellular cAMP levels produced effects on neutrophil motility similar to those of histamine. It is suggested that histamine exerts a 2-fold effect on neutrophil motility mediated via an H-2 receptor site and associated with elevated levels of cAMP.  相似文献   

10.
The addition of histamine to macrophage-like P388D1 cells resulted in a dose-dependent increase in intracellular calcium [Ca2+]i measured by fura-2 in single cells. The maximum level of [Ca2+]i was obtained by addition of 1 x 10(-4) M histamine. The increase was primarily due to release from the intracellular store. The addition of an H1 specific antagonist pyrilamine before histamine treatment inhibited the increase reversibly, while an H2 specific antagonist cimetidine had no inhibitory effect. Histamine also resulted in a dose-dependent increase in cGMP but not in cAMP. These data suggest the existence of histamine H1 receptors in these cells and histamine may have some biological effect on the function of macrophages via [Ca2+]i and cGMP as the second messengers.  相似文献   

11.
In particulate preparations from guinea-pig ventricle, histamine in the concentration range 10(-6)--10(-3) M caused a 3--5fold stimulation of adenylate cyclase activity which was dependent on the presence of GTP. The effects of fourteen analogs of histamine were examined on this cyclase preparation. Five of the compounds studied proved to be partial agonists relative to histamine while nine others had essentially the same intrinsic activity as histamine. The intrinsic activities of the partial agonists were increased by GppNHp to the extent that dimaprit, which was a partial agonist in the presence of GTP, became a full agonist in the presence of GppNHp. The relative potencies of the full agonists as activators of the cyclase were found to correlate with the relative potencies on physiologically defined H2 receptor systems. Activation of the cyclase by histamine, as well as by several of the agonist analogs, including dimaprit and tolazoline, was completely blocked by the H2 antagonist cimetidine, but was not affected by pharmacologically relevant concentrations of the H1 antagonist mepyramine, the beta-blocker alprenolol, or the alpha-blocker phentolamine. The results suggest that all the agonists studied probably interact with a common H2 receptor site on the cardiac muscle cell leading to activation of adenylate cyclase. The accompanying increase in cyclic AMP is presumably responsible for the chronotropic and inotropic effects of histamine and related compounds on cardiac muscle.  相似文献   

12.
Histamine (1-100 microM) induced a concentration-dependent increase in intracellular cyclic AMP in monolayer cultures of human, canine and foetal-bovine articular chondrocytes. The dose-response curve for histamine in each culture was progressively displaced to the right with increasing concentrations of cimetidine, an H2-receptor antagonist. The histamine-induced cyclic AMP elevation in human articular chondrocytes was also significantly decreased by ranitidine, another H2 antagonist, but not by the H1 antagonists mepyramine and chlorpheniramine. These findings indicate that histamine activates chondrocyte adenylate cyclase through an H2 receptor. The cyclic AMP response of human chondrocytes to histamine was many times greater than that measured for synovial fibroblasts under similar conditions. Such findings suggest that mast-cell-chondrocyte interactions in vivo may contribute to changed chondrocyte metabolism in joint disease.  相似文献   

13.
The stimulatory effect of histamine on rabbit and rat testicular capsule was blocked by the H1 blocker, diphenhydramine, but not by the H2 blocker, cimetidine, suggesting the presence of H1 histamine receptors in both rabbit and rat testicular capsules. In the rabbit, both anti-prostaglandin F (PGF) and anti-prostaglandin E (PGE) effaced spontaneous autorhythmic contractions. They markedly inhibited PGF 2 alpha, PGE1 and histamine-stimulated contractions of the rabbit testicular capsule. In the rat, anti-PGF or anti-PGE had no inhibitory effects on the capsular tone, but they both inhibited the stimulatory effects of histamine. These data suggest that the action of histamine on the rabbit and rat testicular capsules could be due partly to a secondary release of the PG's, PGE2 and PGF2 alpha.  相似文献   

14.
The effects of exogenous histamine (H) on prostaglandin (PG) generation and release in uteri isolated from diestrous rats and the influences of H2-receptors blockers (cimetidine and metiamide) on the output of uterine PGs, were explored. Moreover, the action of H on the uterine 9-keto-reductase, was also studied. Histamine (10(-4) M) failed to alter the basal output of PGE1 but reduced significantly the generation and release of PGE2 and augmented the output of PGF2 alpha. On the other hand, cimetidine (10(-5) M) enhanced the basal release of PGE2 but had no action on the outputs of PGs E1 or F2 alpha. The enhancing effect of H on the production and release of PGF2 alpha was abolished in the presence of cimetidine. Also, the antagonist reversed the influence of H on the output of PGE2. Metiamide, another H2-receptor antagonist, did not alter the basal control generation and release of uterine PGs, but antagonized the augmenting influence of H on PGF2 alpha uterine output, as much as cimetidine did, and prevented the depressive action of H on the release of PGE2 from uteri. Histamine (10(-4) M) significantly stimulated uterine formation of cyclic-adenosine monophosphate, an action which was antagonized by the presence of cimetidine (10(-5) M), a blocker of H2 receptors. Also, histamine (10(-5) M) and dibutyrylcyclic-adenosine monophosphate (DB-cAMP) at 10(-3) M, enhanced significantly the formation 3H-PGF2 alpha from 3H-PGE2. Results presented herein demonstrate that H is able to diminish the generation of PGE2 in uteri from rats at diestrus augmenting the synthesis of PGF2 alpha, apparently via the activation of H2-receptors, enhancing adenylate-cyclase. These effects appear to increase uterine 9-keto-reductase activity which transforms PGE2 into PGF2 alpha. Relationships between the foregoing results and those evoked by estradiol, are also discussed.  相似文献   

15.
K Tasaka  C Kamei  H Akahori  K Kitazumi 《Life sciences》1985,37(21):2005-2014
When histamine (Hi) and other agonists were applied intraventricularly, Hi caused a dose-dependent inhibition of the avoidance response in rats; its ED50 was 3.60 micrograms. 1-methylHi, 1-methylimidazole acetic acid and imidazole acetic acid which are major metabolites of Hi produced no inhibitory effect even at 50 micrograms. H1-agonists (2-methylHi and 2-thiazolylethylamine) also depressed the avoidance response; their dose-response lines run parallel to that of Hi. The depressant effects of H2-agonists (4-methylHi and dimaprit) were relatively weak; their dose-response lines were not parallel to that of Hi. When antagonists were pretreated intravenously, Hi action was clearly antagonized by diphehydramine and pyrilamine, but not by cimetidine or ranitidine. Intraventricular injection of Hi mixed with cimetidine or ranitidine did not change the effect induced by Hi alone. The avoidance response was not affected by noradrenaline, dopamine or 5-hydroxytryptamine. Although acetylcholine (ACh) suppressed the avoidance response dose-dependently, its effect was much weaker than that of Hi. Pretreatment with cholinergic blocking drugs (atropine and scopolamine) antagonized ACh action but not Hi action. From these results, it is assumed that the inhibitory effect of Hi on the avoidance response is preferentially linked to the H1-receptor. After intraventricular application of 3H-Hi, the highest radioactivity was determined in the hypothalamus.  相似文献   

16.
Adenosine and adenosine receptor agonists have a variety of inhibitory effects on the generation of inflammatory mediators by neutrophils and other cell types. In human neutrophils stimulated with the chemotactic peptide FMLP, adenosine agonists inhibit O2- generation and degranulation. Because these findings suggest that the agonists may have potential as antiinflammatory agents, several compounds were evaluated for effects on the exudative and cellular phases of carrageenan-induced pleural inflammation in rats. All of the agonists tested inhibited both parameters of the inflammatory response. Inhibition appeared to correlate better with binding to the A1 than to the A2 receptor and was reversible by a known adenosine receptor antagonist, 8-phenyltheophylline. In mechanistic studies, R-N-(1-methyl-2-phenylethyl)adenosine, a standard A1 selective agonist, reversed the drop in circulating neutrophil count that occurs after injection of carrageenan. These results suggest that the agonists may prevent cell emigration by inhibiting adhesion to the endothelium or diapedesis. In addition (R)-N-(1-methyl-2-phenylethyl)adenosine had weak inhibitory effects on superoxide production by FMLP-stimulated rat neutrophils. Control studies showed that the effects of the agonists were not the result of agonist-induced hypotension nor corticosterone production by the adrenal glands. These findings indicate that adenosine receptor agonists are effective new pharmacologic tools for the study of inflammatory processes.  相似文献   

17.
Paired studies of hepatic microsomal function were conducted in eight subjects during treatment with two histamine H2 antagonists, cimetidine and ranitidine. Cimetidine but not ranitidine inhibited the metabolism of antipyrine (phenazone) and demethylation of aminopyrine (aminophenazone) as measured by breath 14CO2 production after intravenous injection of 14C-aminopyrine. These results suggest that the metabolic inhibitory actions on the liver may be separated from H2 antagonist effects, and that ranitidine has an advantage over cimetidine by not inhibiting microsomal drug oxidative function.  相似文献   

18.
We examined responses of pial arteries and veins in situ to noradrenergic stimuli in the presence of histamine. Electrical stimulation of sympathetic nerves and perivascular microapplication of norepinephrine in mock cerebrospinal fluid produced constriction of arteries and veins in anesthetized cats. During simultaneous perivascular injection of histamine, these noradrenergic responses were attenuated or reversed. In both arteries and veins, constriction from sympathetic nerve stimulation was prevented by simultaneous application of the histamine receptor agonists, pyridylethylamine (H1) or impromidine (H2), results that suggest interference involving both types of histamine receptors. In arteries, impromidine, but not pyridylethylamine, inhibited constriction resulting from exogenous norepinephrine. Our findings indicate that histamine may have an inhibitory influence, exerted through both receptor types, on noradrenergic mechanisms in cerebral vessels.  相似文献   

19.
Stimulation of human H1 and H2-histamine receptors (HRs) primarily activates signaling pathways to increase intracellular calcium [Ca2+]i and cyclic AMP (cAMP), respectively. Activation of H2-HR in human embryonic kidney (HEK) cells by histamine and dimaprit increases both cAMP formation and [Ca2+]i, as determined by cAMP-scintillation proximity assays and fluorescence imaging plate reader (FLIPR) assays. In HEK cells expressing relatively high levels of H2-HR (Bmax=26 pmol/mg protein), histamine and dimaprit are full agonists in eliciting cAMP responses with pEC50 values of 9.30 and 7.72 that are 1000-fold more potent than their respective pEC50 values of 6.13 and 4.91 for increasing [Ca2+]i. The agonist potencies decrease for both responses at lower H2-HR density (5 pmol/mg protein) and dimaprit exhibits partial agonist behavior for the [Ca2+]i response. The inverse agonists ranitidine and cimetidine more potently inhibit cAMP production in the higher expressing H2-HR line. Histamine also activated both signaling pathways via human H1-HRs highly expressed (Bmax=17 pmol/mg protein) in HEK cells, with a 1000-fold greater potency for [Ca2+]i vs. cAMP responses (pEC50=7.86 and 4.82, respectively). These studies demonstrate a markedly different potency for activation of multiple signaling pathways by H1- and H2-HRs that may contribute to the selectivity of histamine responses in vivo.  相似文献   

20.
Melanoma cells and tissues contain considerable amounts of histamine and express histamine receptors, suggesting the existence of autocrine and paracrine regulation by histamine. Our previous in vitro results suggested that histamine elevates melanoma cell growth through the H2 receptor. In this work we show that in vivo tumour proliferation in immunodeficient mice xenotransplanted with a human melanoma cell line is diminished by cimetidine, an H2 receptor antagonist, if combined with a tamoxifen derivate acting on cytochrome p450 molecules (DPPE). Ranitidine, another H2 receptor antagonist, has a weaker inhibitory effect, the kinetics and mechanism of which is probably dissimilar to that of the cimetidine/DPPE mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号