首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class Ia antiarrhythmic drugs, including procainamide (PROC), are associated with cardiac sodium channel blockade, delayed ventricular repolarisation and with a risk of ventricular pro-arrhythmia. The HERG K(+) channel is frequently linked to drug-induced pro-arrhythmia. Therefore, in this study, interactions between PROC and HERG K(+) channels were investigated, with particular reference to potency and mechanism of drug action. Whole-cell patch-clamp recordings of HERG current (I(HERG)) were made at 37 degrees C from human embryonic kidney (HEK 293) cells stably expressing the HERG channel. Following activating pulses to +20 mV, I(HERG) tails were inhibited by PROC with an IC(50) value of approximately 139 microM. I(HERG) blockade was found to be both time- and voltage-dependent, demonstrating contingency upon HERG channel gating. However, I(HERG) inhibition by PROC was relieved by depolarisation to a highly positive membrane potential (+80 mV) that favoured HERG channel inactivation. These data suggest that PROC inhibits the HERG K(+) channel by a primarily 'open' or 'activated' channel state blocking mechanism and that avidity of drug-binding is decreased by extensive I(HERG) inactivation. The potency of I(HERG) blockade by PROC is much lower than for other Class Ia agents that have been studied previously under analogous conditions (quinidine and disopyramide), although the blocking mechanism appears similar. Thus, differences between the chemical structure of PROC and other Class Ia antiarrhythmic drugs may help provide insight into chemical determinants of blocking potency for agents that bind to open/activated HERG channels.  相似文献   

2.
Genes of multidrug resistance in haematological malignancies   总被引:1,自引:1,他引:1  
Since the early 1970s, multiple drug resistance has been known to exist in cancer cells and is thought to be attributable to a membrane-bound, energy-dependent pump protein (P-glycoprotein [P-gp]) capable of extruding various related and unrelated chemotherapeutic drugs. The development of refractory disease in haematological malignancies is frequently associated with the expression of one or several multidrug resistance (MDR) genes. MDR1, multidrug resistance-associated protein (MRP) and lung-resistance protein (LRP) have been identified as important adverse prognostic factors. Recently it has become possible to reverse clinical MDR by blocking P-gp-mediated drug efflux. The potential relevance of these reversal agents of MDR as well as the potential new approaches to treat the refractory disease are discussed in this article. In addition, an array of different molecules and mechanisms by which resistant cells can escape the cytotoxic effect of anticancer drugs has now been identified. These molecules and mechanisms include apoptosis-related proteins and drug inactivation enzymes. Resistance to chemotherapy is believed to cause treatment failure in more than 50% patients. Clearly, if drug resistance could be overcome, the impact on survival would be highly significant. This review focuses on molecular mechanism of drug resistance in haematological malignancies with emphasis on molecules involved in MDR. In addition, it brings the survey of methods involved in determination of MDR, in particular P-gp/MDR1, MRP and LRP.  相似文献   

3.
A diagnostic criterion for drug addiction, persistent drug‐craving continues to be the most treatment‐resistant aspect of addiction that maintains the chronic, relapsing, nature of this disease. Despite the high prevalence of psychomotor stimulant addiction, there currently exists no FDA‐approved medication for craving reduction. In good part, this reflects our lack of understanding of the neurobiological underpinnings of drug‐craving. In humans, cue‐elicited drug‐craving is associated with the hyperexcitability of prefrontal cortical regions. Rodent models of cocaine addiction indicate that a history of excessive cocaine‐taking impacts excitatory glutamate signaling within the prefrontal cortex to drive drug‐seeking behavior during protracted withdrawal. This review summarizes evidence that the capacity of cocaine‐associated cues to augment craving in highly drug‐experienced rats relates to a withdrawal‐dependent incubation of glutamate release within prelimbic cortex. We discuss how stimulation of mGlu1/5 receptors increases the activational state of both canonical and noncanonical intracellular signaling pathways and present a theoretical molecular model in which the activation of several kinase effectors, including protein kinase C, extracellular signal‐regulated kinase and phosphoinositide 3‐kinase (PI3K) might lead to receptor desensitization to account for persistent cocaine‐craving during protracted withdrawal. Finally, this review discusses the potential for existing, FDA‐approved, pharmacotherapeutic agents that target kinase function as a novel approach to craving intervention in cocaine addiction.  相似文献   

4.
Despite a growing number of studies that have investigated the reproductive effects of maternal cocaine use, a homogeneous pattern of fetal effects has not been established and there is little consensus on the adverse effects of the drug. We used meta-analysis to evaluate the reproductive risks of cocaine. We reviewed the 45 scientific papers published in the English language dealing with effects of cocaine used during pregnancy on pregnancy outcome in humans, and identified 20 papers eligible for meta-analysis (cocaine use in pregnancy, pregnancy/fetal outcome studies, human studies, original work, cohort or case control studies, control group present, English language). Our analysis revealed that very few adverse reproductive effects could be shown to be significantly associated with cocaine use by polydrug users when compared to control groups of polydrug users not using cocaine [genitourinary malformations; odds ratio of 6.08 (95% CI 1.18-31.3); gestation age: Cohen's d 0.37 (CI 0.2-0.55)]. When the control groups consisted of no drug users, the polydrug users abusing cocaine had a higher risk for spontaneous abortions [odds ration 10.50 (CI 11.74-64.1)]. Similarly, comparison of users of cocaine alone or no drug users revealed a higher risk for in utero death, in addition to genitourinary tract malformations. Analysis of continuous variables (head circumference, gestational age, birth weight and length) revealed that the effect size was dependent upon the nature of the comparison. Comparison of cocaine users to no drug users consistently yielded a medium effect size (Cohen's d) between 0.50 and 0.58, while comparison of polydrug/cocaine users to polydrug/no cocaine users provided effect sizes small to non existent (0.06-0.37). These discrepancies suggest that a variety of adverse reproductive effects commonly quoted to be associated with maternal use of cocaine may be caused by confounding factors clustering in cocaine users.  相似文献   

5.
Behavior controlled by various schedules of reinforcement is useful for characterizing drugs as well as for analyzing the mechanisms of action of their effects on behavior. Conditioned avoidance techniques have been useful for studying neuroleptics and for predicting their clinical antipsychotic acitivity; the possible involvement of dopaminergic mechanisms in the effect of neurolpetics on avoidance behavior is discussed. Tricyclic antidepressant agents have been studied in assays involving interactions with other agents, such as cocaine, amphetamine and tetrabenazine. One type of operant behavior, Sidman avoidance, has been used as particularly sensitive assay for such drug interactions. Another schedule, in which "observing" responses in pigeons are measured. seems to provide a method for studying antidepressants without involving drug interaction phenomena. For tricyclic compounds, facilitation of observing responses and weak potency of conditioned avoidance inhibition constitute a pharmacological profile that seems to have some predictive value for clinical imipramine-like antidepressant activity. "Conflict (punishment) schedules have been useful for predicting antianxiety activity in man. Although the degree of anticonflict effect observed is consistent with Dew's rate dependency hypothesis, this principle does not fully account for the observed drug effects. In the conflict model, the actions of benzodiazepines differ in drug-naive versus drug-experienced animals. Experiments with parachlorophenylalnine have not yet provided clear support for the postulated role of serotonin in related phenomena.  相似文献   

6.
A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 μM, and the threshold area under the cocaine concentration versus time curve (AUC) value in brain (denoted by AUC2(∞)) required to produce physiological effects has been estimated to be 7.9±2.7 μM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE) can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞). The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.  相似文献   

7.
Atrial fibrillation (AF) is the most common type of clinical arrhythmia. Currently available anti-AF drugs are limited by only moderate efficacy and an unfavorable safety profile. Thus, there is a recognized need for improved antiarrhythmic agents with actions that are selective for the fibrillating atrium. State-dependent Na(+)-channel blockade potentially allows for the development of drugs with maximal actions on fibrillating atrial tissue and minimal actions on ventricular tissue at resting heart rates. In this study, we applied a mathematical model of state-dependent Na(+)-channel blocking (class I antiarrhythmic drug) action, along with mathematical models of canine atrial and ventricular cardiomyocyte action potentials, AF, and ventricular proarrhythmia, to determine the relationship between their pharmacodynamic properties and atrial-selectivity, AF-selectivity (atrial Na(+)-channel block at AF rates versus ventricular block at resting rates), AF-termination effectiveness, and ventricular proarrhythmic properties. We found that drugs that target inactivated channels are AF-selective, whereas drugs that target activated channels are not. The most AF-selective drugs were associated with minimal ventricular proarrhythmic potential and terminated AF in 33% of simulations; slightly fewer AF-selective agents achieved termination rates of 100% with low ventricular proarrhythmic potential. Our results define properties associated with AF-selective actions of class-I antiarrhythmic drugs and support the idea that it may be possible to develop class I antiarrhythmic agents with optimized pharmacodynamic properties for AF treatment.  相似文献   

8.
Cocaine withdrawal produces behavioral disruptions in rats   总被引:1,自引:0,他引:1  
M E Carroll  S T Lac 《Life sciences》1987,40(22):2183-2190
There is currently no laboratory or clinical evidence from animal or human studies documenting a withdrawal syndrome associated with cocaine dependence, although many users report that withdrawal disturbances are responsible for their repeated use of the drug. In the present study rats self-administered i.v. cocaine and a sweetened drinking solution. When cocaine access was terminated there was a marked suppression in operant behavior reinforced by the sweetened solution, and this withdrawal disruption was immediately reversed when cocaine was reinstated. There were no physical signs of withdrawal, and food intake increased when cocaine was withdrawn. The results suggest that sensitive behavioral tests reveal aspects of drug dependence that may account for persistent abuse.  相似文献   

9.
Schnabel CA  Fineberg SE  Kim DD 《Peptides》2006,27(7):1902-1910
Peptides are a growing class of agents whose therapeutic use originated with non-human treatments such as animal insulins. Xenopeptides continue to be explored for biotherapeutic development using genetic engineering, and through the rich resource of animal and plant polypeptides. One of the major concerns of therapeutic administration of xenopeptides is the potential for untoward immune responses that may lead to loss of drug efficacy or adverse events in recipients. An increased risk of immunogenicity is perceived with xenopeptides, however, human-derived therapies also induce antibody formation that in some cases has been associated with severe clinical sequelae. In this review, antibody responses to xenopeptides are highlighted looking at current hormone therapies used to treat endocrine disorders. Similar to clinical experiences with peptide-based agents in general, antibody responses against xenopeptide hormone therapies in majority of cases have been benign in nature with minimal clinical impact.  相似文献   

10.
PURPOSE OF REVIEW: This review provides a concise update of the involvement of endothelial adhesion molecules in atherogenesis, an overview of current advances in the development of adhesion molecule blocking agents, as well as an insight into the potential of these molecules in cardiovascular therapy. RECENT FINDINGS: As endothelial adhesion molecules are deemed to play an important role in the development and progression of atherosclerotic lesions, they are interesting targets for therapeutic intervention in this process. In particular, P-selectin and vascular cell adhesion molecule 1 are widely considered to hold promise in this regard. Current research efforts centre on the design of agents that directly block the interaction of the receptor with its ligand (e.g. soluble P-selectin glycoprotein ligand 1, blocking antibodies, EWVD-based peptides) or that interfere with their synthesis (e.g. antisense oligonucleotides) or their regulatory control by nuclear factor kappa B or peroxisome proliferator-activated receptor gamma. Furthermore, adhesion molecules have been exploited as a target for the specific delivery of drug carriers (e.g. biodegradable particles with entrapped dexamethasone) or therapeutic compounds (e.g. dexamethasone) to the plaque. All approaches have been shown to be effective in blocking adhesion molecule function in in-vitro studies and in-vivo models for inflammation or atherosclerosis. SUMMARY: Although the field has achieved considerable progress in recent years, leading to the development of a number of interesting leads, final proof of their efficacy in cardiovascular therapy is eagerly awaited.  相似文献   

11.
Rogawski MA 《Amino acids》2000,19(1):133-149
Studies in experimental models have suggested that NMDA receptor antagonists may have utility in the treatment of a wide variety of neurological and psychiatric disorders. However, clinical trials have not been encouraging largely because the antagonists evaluated to date have exhibited unacceptable neurobehavioral side effects. In animals, therapeutic doses of some low-affinity channel blocking (uncompetitive) NMDA receptor antagonists are associated with less gross neurological impairment and behavioral toxicity than other types of NMDA receptor antagonists. Favorable clinical experiences with several such agents has bolstered confidence in the neurotherapeutic potential of low affinity NMDA antagonists. This article reviews current research attempting to explain the improved tolerability of such antagonists. While no single mechanism appears to account for the reduced toxicity of such agents, kinetic properties, particularly rapid blocking rate, seem to be of key importance. Other factors include partial trapping, reduced agonist-independent (closed channel) block, subunit selectivity (particularly for receptors that do not contain the NR2A subunit), combined block at allosteric (voltage-independent) sites, and synergistic therapeutic effects produced by additional actions at receptor targets apart from NMDA receptors (e.g., weak positive allosteric modulation of GABA(A) receptors or state-dependent Na+ channel block).  相似文献   

12.
Yang Y  Yao H  Lu Y  Wang C  Buch S 《PloS one》2010,5(10):e13427
It is becoming widely accepted that psychoactive drugs, often abused by HIV-I infected individuals, can significantly alter the progression of neuropathological changes observed in HIV-associated neurodegenerative diseases (HAND). The underlying mechanisms mediating these effects however, remain poorly understood. In the current study, we explored whether the psychostimulant drug cocaine could exacerbate toxicity mediated by gp120 in rat primary astrocytes. Exposure to both cocaine and gp120 resulted in increased cell toxicity compared to cells treated with either factor alone. The combinatorial toxicity of cocaine and gp120 was accompanied by an increase in caspase-3 activation. In addition, increased apoptosis of astrocytes in the presence of both the agents was associated with a concomitant increase in the production of intracellular reactive oxygen species and loss of mitochondrial membrane potential. Signaling pathways including c-jun N-teminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK), and nuclear factor (NF-κB) were identified to be major players in cocaine and gp120-mediated apoptosis of astrocytes. Our results demonstrated that cocaine-mediated potentiation of gp120 toxicity involved regulation of oxidative stress, mitochondrial membrane potential and MAPK signaling pathways.  相似文献   

13.
Cocaine use remains a serious problem, despite intensive efforts to curb abuse. Given the lack of effective pharmacotherapeutics for the treatment of cocaine addiction, research groups have targeted immunopharmacotherapy in which the drug user's immune system is trained to recognize and remove cocaine prior to entry into the central nervous system. Antibody cocaine esterases and simple binders have been procured, however, rates and/or affinities still need improvement before clinical trials are warranted. Herein, we report the synthesis and testing of two new haptens for the procurement of cocaine binding antibodies and cocaine esterase catalytic antibodies. Central in the design of these haptens was the placement of the linker functionality distal from the anticipated cocaine epitopes in an attempt to bury the hapten deep within an antibody combining site to gain possible entropic and enthalpic advantages.  相似文献   

14.
Different immunotherapeutic approaches are in the pipeline for the treatment of drug dependence. “Drug vaccines” aim to induce the immune system to produce antibodies that bind to drugs and prevent them from inducing rewarding effects in the brain. Drugs of abuse currently being tested using these new approaches are opioids, nicotine, cocaine, and methamphetamine. In human clinical trials, “cocaine and nicotine vaccines” have been shown to induce sufficient antibody levels while producing few side effects. Studies in humans, determining how these vaccines interact in combination with their target drug, are underway. However, although vaccines can become a reasonable treatment option for drugs of abuse, there are several disadvantages that must be considered. These include i) great individual variability in the formation of antibodies, ii) the lack of protection against a structurally dissimilar drug that produces the same effects as the drug of choice, and iii) the lack of an effect on the drug desire that may predispose an addict to relapse. In addition, a comprehensive overview of several crucial ethical issues has not yet been widely discussed in order to have not only a biological approach to immunotherapy of addiction. Overall, immunotherapy offers a range of possible treatment options: the pharmacological treatment of addiction, the treatment of overdoses, the prevention of toxicity to the brain or the heart, and the protection of the fetus during pregnancy. So far, the results obtained from a small-scale experiment using vaccines against cocaine and nicotine suggest that a number of important technical challenges still need to be overcome before such vaccines can be approved for clinical use.  相似文献   

15.
Animal models have provided valuable information related to trait and state variables associated with vulnerability to drug addiction. Our brain imaging studies in monkeys have implicated D2 receptors in cocaine addiction. For example, an inverse relationship between D2 receptor availability and rates of cocaine self-administration has been documented. Moreover, environmental variables, such as those associated with formation of the social hierarchy, can impact receptor availability and sensitivity to the abuse-related effects of cocaine. Similarly, both D2 receptor availability and cocaine self-administration can be altered by chronic drug administration and fluctuations in hormone levels. In addition, cocaine self-administration can be altered in an orderly fashion by presentation of an acute stressor, such as acting as an intruder into an unfamiliar social group, which can shift the cocaine dose-response curve to the left in subordinate monkeys and to the right in dominant animals, suggesting an interaction between social variables and acute stressors. Conversely, irrespective of social rank, acute environmental enrichment, such as increasing the size of the living space, shifts the cocaine dose-response curve to the right. These findings highlight a pervasive influence of the environment in modifying the reinforcing effects of cocaine and strongly implicate brain D2 receptors.  相似文献   

16.
Drug resistance is a major problem in cancer chemotherapy and such resistance may be responsible for treatment failure in 90 % of patients with metastatic cancer. From the research work in the past 30 years, multi-mechanisms responsible for the development of drug resistance have been identified. However, to date single agents that target specific single mechanisms of resistance have not been proven effective. Theoretically, herbs have the potential to target multi-mechanisms of resistance since they contain multiple components and may provide an exciting potential in overcoming drug resistance. The present paper provides an overview of the known mechanisms of resistance and reviews the existing data on herbal medicines (Chinese medicines) as chemosensitizing agents from both the English and Chinese literature. Our review found that certain herbs are capable of inducing strong chemosensitizing effect with various mechanisms, but relevant information useful for development of herbs as viable products for therapeutic use is generally inadequate. Ideas for improving in vitro screening and animal/clinical studies that could enhance future development of herbal product as chemosensitizing agent for the treatment of resistant cancer are also discussed.  相似文献   

17.
Serratia marcescens is an opportunistic pathogen causing severe urinary tract infections in hospitalized individuals. Infections of S. marcescens are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing (QS)-a cell to cell communication-system of S. marcescens acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. Since, the QS system of S. marcescens directly accords to its pathogenesis, targeting QS system will provide an improved strategy to combat drug resistant pathogens. In the present study, QS system of S. marcescens has been used as target and its inhibition has been studied upon exposure to bioactives from coral associated bacteria (CAB). This study also emphasises the potential of CAB in producing bioactive agents with anti-QS and antibiofilm properties. Two CAB isolates CAB 23 and 41 have shown to inhibit biofilm formation and the production of QS dependent virulence factors like prodigiosin, protease, lipase and swarming motility. The study, on the whole explicates the potential of QS system as a target to treat drug resistant bacterial infections.  相似文献   

18.
Modern drug discovery embraces a strategy of targeting cellular signal transduction pathways as a means of finding new therapeutic agents. Historically, natural products derived from microorganisms have played an important role as drug leads and clinical candidates under this paradigm. The future drug potential of natural products as signal transduction agents looks promising, as illustrated by two key examples. First, substantial advances have been made in the development of inhibitors based on immunophilin ligand polyketides, which target the TOR-mediated pathways and can modulate processes including cell proliferation and cell-cycle arrest. Second, the discovery of natural product inhibitors of the ubiquitin-proteasome proteolytic signal transduction pathway represents an emerging field. Given these examples, together with the diversity of as yet undiscovered agents, natural product signal transduction agents offer great potential for future drug discovery efforts.  相似文献   

19.
肿瘤进展与人免疫系统间的联系已经被广泛研究,有许多免疫分子已被证实参与其中。CD47(整合素相关蛋白)为一种免疫球蛋白超家族成员,在人免疫系统中发挥着重要功能。研究表明CD47在肿瘤细胞表面也有高表达,其高表达与肿瘤的生长、转移及复发等密切相关。肿瘤细胞表面的CD47与巨噬细胞表面的SIRPα相互作用,并发出“别吃我”的免疫抑制性信号,从而保护肿瘤细胞免受巨噬细胞吞噬。因此,开发以CD47为靶点的拮抗剂可阻断此抑制性信号,从而增强巨噬细胞的吞噬效应,以达到增强抗肿瘤免疫反应的目的。最新研究证实,CD47拮抗剂在T细胞介导的抗肿瘤免疫反应中也发挥了重要作用。本文将对CD47分子的结构功能、在抗肿瘤免疫反应中的作用及以其为靶点的拮抗剂研究进展进行综述,以期为进一步的药物开发及临床研究等提供参考。  相似文献   

20.
Mao  Jie  Liu  Shujun  Ai  Min  Wang  Zhuo  Wang  Duowei  Li  Xianjing  Hu  Kaiyong  Gao  Xinghua  Yang  Yong 《Journal of hematology & oncology》2022,15(1):1-40
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号