首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

2.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

3.
In order to study the role of cyclic AMP in the inhibition by somatostatin of glucose-induced insulin release, the effect of somatostatin on the potentiation by dibutyryl-cyclic AMP (db-cAMP) of insulin release from isolated pancreatic islets of rats was examined. Isolated islets were obtained from the rat pancreas by the collagenase method. Ten islets were incubated for periods of 30 min in Krebs-Ringer bicarbonate buffer containg albumin and glucose 2.0 mg/ml in the presence or absence of somatostatin (1 microgram/ml or 100 ng/ml) and/or db-cAMP 1 mM. Glucose-induced insulin release was reduced by somatostatin in concentrations of 1 microgram/ml. Somatostatin in a concentration of 100 ng/ml significantly abolished the potentiation by db-cAMP of insulin release (p less than 0;01), in spite of exerting no inhibition of glucose-induced insulin release. However, in the presence of theophylline 5 mM, somatostatin 100 ng/ml did not show that inhibitory effect on the potentiated insulin release.  相似文献   

4.
F Martin  F J Bedoya 《Life sciences》1991,49(25):1915-1921
The involvement of cAMP- and calcium-dependent pathways on the inhibitory effect of CsA (0.5 micrograms/ml) on insulin and glucagon release was studied in collagenase-isolated islets. CsA suppressed by 50% the release of insulin in pertussis toxin treated islets stimulated by 20 mM D-glucose. CsA blocked glucagon and insulin release induced by 0.2 mM IBMX (80% and 50% respectively). Similarly it inhibited glucagon and insulin release induced by 1 microM A23187 (53% and 40% respectively). CsA also abolished 0.1 microM glucagon-induced insulin release and 10 ng/ml VIP-induced glucagon release (70% and 38% respectively). The glucagon response to 2 mM D-glucose and to 10 mM arginine was decreased 25% and 45% respectively by CsA. The inhibitory effect of 0.1 microM somatostatin on insulin release was significantly abolished by CsA (p less than 0.001 vs control). On the other hand 1 microM forskolin induced insulin and glucagon release was not modified by CsA. Rats treated with CsA (10 mg/kg body wt) during 10 days showed hyperglycaemia, hypoglucagonemia and higher contents of pancreatic glucagon. It is concluded that CsA affects alpha- and beta-cell function, in vivo and in vitro, acting through calcium and cAMP-dependent pathways. This latter pathway involves the Ca(2+)-calmodulin dependent phosphodiesterase and the regulatory proteins Gs and Gi.  相似文献   

5.
This study examined the effects of exogenous somatostatin and insulin on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas. Somatostatin inhibited the release of both amylin and insulin from the perfused pancreas to the same extent. The infusion of 10 nM somatostatin resulted in 40% inhibition of the secretion of both amylin and insulin induced by 11.1 mM glucose and 10 mM arginine, and this inhibition was significantly increased to 70% by the infusion of 100 nM somatostatin (p less than 0.05). The amylin/insulin molar ratios remained constant at 0.8% and were not changed by the infusion of somatostatin. On the other hand exogenous insulin at a concentration of 1.8 nM did not affect the release of amylin induced by 11.1 mM glucose and 10 mM arginine, whereas 180 nM insulin slightly, although not significantly, inhibited the release of amylin by 15%. These findings suggest that the release of amylin may be negatively regulated by somatostatin and that circulating insulin may have no direct effect on the release of amylin at least at a physiological concentration.  相似文献   

6.
This study was designed in an attempt to elucidate a mechanism of somatostatin inhibition of glucose-induced Ca+ uptake by rat pancreatic islets. Rat pancreatic islets were perifused with Krebs-Ringer bicarbonate (KRB) buffer containing 16.7 mM of glucose with somatostatin (2 micrograms/ml) or/and diltiazem HCl (2 x 10(-5) M). Somatostatin inhibited preferentially the early phase of glucose-induced insulin release, whereas diltiazem HCl inhibited the late one. And the concomitant presence of the submaximal concentration of somatostatin (2 micrograms/ml) and diltiazem HCl (2 x 10(-5 M) provided the completely additive inhibition of glucose-induced insulin release. Rat pancreatic islets were incubated with KRB buffer supplemented with 16.7 mM of glucose and 45CaCl2 (10 muCi/ml) for 5--60 min and the biphasic 45Ca uptake by pancreatic islets was obtained. Somatostatin (500 ng/ml-4 micrograms/ml) gave the suppressive effect on the early phase of glucose-induced 45Ca uptake, but the higher concentration (2 micrograms/ml) of somatostatin did not impair the late phase of 45Ca uptake by pancreatic islets. On the other hand, diltiazem HCl did suppress the late phase of glucose-induced 45Ca uptake dose-dependently, but did not suppress the early phase (2 x 10(-5) M). These data indicate that somatostatin suppresses the early phase of glucose-induced Ca2+ uptake preferentially to the late one and has a different action mechanism from Ca antagonist on glucose-induced insulin release.  相似文献   

7.
The effect of bombesin on insulin release from isolated pancreatic islets of rats was examined in vitro. Bombesin, at the doses ranging from 10 ng/ml to 1 microgram/ml, significantly inhibited 16.7 mM glucose-induced insulin release, while bombesin had no inhibitory effect on insulin release at 8.3 mM and 3.3 mM glucose. Moreover, bombesin also suppressed insulin release elicited by 10 mM arginine at the doses of 100 ng/ml and 1 microgram/ml. These results indicate that bombesin has a direct inhibitory action on insulin release.  相似文献   

8.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

9.
Insulin release in the perfused isolated rat pancreas was measured after stimulation with 16.5 mM glucose with and without somatostatin (cycle form, 100 ng/ml) in the medium. A complete blockage of the typical biphasic pattern of insulin release ocurred with somatostatin in the medium. Such blockage was abolished when cAMP (2.5 mM) and a 0.5 ml solution of glucagon (1 mg/ml) were continuously perfused for 20-minute periods and for 30-second periods correspondently. It did not take place when glibenclamide (HB-419) was perfused for a 20-minute period at a rate of 10 mug/ml. The results suggest that the adenylcyclase dependent mechanisms of glucose-induced insulin release are involved in the inhibition of the glucose-induced insulin secretion by somatostatin.  相似文献   

10.
The effects of somatostatin, insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II)/MSA on growth hormone (GH) (1 microgram/ml)-induced lipolysis were examined employing chicken adipose tissue in vitro. Basal and GH-stimulated glycerol release were inhibited by somatostatin (1 ng/ml) and by IGF-II/MSA (10 and 100 ng/ml). Insulin and IGF-I (10 and 100 ng/ml) completely inhibited the lipolytic response to GH without affecting basal glycerol release. Insulin and IGF-I were equipotent in inhibiting GH-induced lipolysis while IGF-II is only 16% as potent as insulin.  相似文献   

11.
The effects of N6-2′-O-dibutyryl cyclic AMP on glucose metabolism and lipolysis in fragments of rat epididymal adipose tissue were studied. Measurements were made of glucose uptake, conversion of glucose carbon to CO2 and tissue fatty acids and glyceride-glycerol, lactate production, and glycerol release. Low concentrations of dibutyryl cyclic AMP (0.1–0.5 mM) increased all parameters of glucose metabolism and inhibited glycerol release in tissue from both normally fed and fasted rats. Higher concentrations of dibutyryl cyclic AMP (3–5 mM) diminished glucose utilization and greatly accelerated lipolysis. Insulin, 50 μunits/ml, accelerated glucose metabolism in the presence of either low or high concentrations of dibutyryl cyclic AMP though the effect of insulin was greatly reduced by 3 mM dibutyryl cyclic AMP. Tissue exposed to concentrations of dibutyryl cyclic AMP which inhibited glucose metabolism (5 mM), then rinsed and reincubated without dibutyryl cyclic AMP, displayed increased glucose utilization. The results of these experiments emphasize the need for caution in interpretation of the effects of dibutyryl cyclic AMP on adipose tissue metabolism and the need for further research to elucidate the role of cyclic AMP in the regulation of glucose metabolism.  相似文献   

12.
The effect of somatostatin on lipolysis was investigated utilizing isolated chicken adipocytes. Somatostatin-14 and -28 inhibited basal lipolysis. This ability to suppress glycerol release (used as an index of lipolysis) was emphasized in presence of stimulated lipolysis. Concentration of 1 ng/ml somatostatin-14 (0.625 nM) and somatostatin-28 (0.312 nM) was found to inhibit completely the glycerol release induced by concentrations of glucagon up to 2 ng/ml (0.58 nM). The percentage of inhibition was dose-dependent. The antilipolytic effect of somatostatin-14 was also observed during ACTH and aminophylline-stimulated lipolysis. Among the mechanisms which could account for the inhibition, a possible competitive effect of somatostatin-14 with 125I-labelled glucagon binding to adipocyte membranes was excluded. The small inhibiting effect of somatostatin-14 on glycerol release prompted by dibutyryl cyclic AMP, together with the significant inhibiting effect on aminophylline-stimulated lipolysis argued for a reduction of cyclic AMP accumulation. The increase of cyclic AMP levels induced by glucagon was substantially reduced in presence of somatostatin-14. It was concluded that in chicken adipocytes somatostatin inhibited the rate of lipolysis and that reduction on cyclic AMP could be responsible, at least in part, for the antilipolytic effect.  相似文献   

13.
The influence of cyclic 3',5'-guanosine monophosphate (cGMP) on the lipolytic and antilipolytic (inhibition of glucagon-stimulated lipolysis) responses to GH (1 microgram/ml) was examined in chicken adipose tissue in vitro. Both 8-bromo-cGMP (0.1 mM) and sodium nitroprusside (1 mM) (a guanyl cyclase stimulator) completely inhibited the lipolytic effect of GH. A cGMP-lowering agent, LY83583 (10 microM), reversed the inhibitory effect of sodium nitroprusside on GH-stimulated lipolysis. Furthermore, the suppressive effects of insulin (100 ng/ml), insulin-like growth factor I (IGF-I) (100 ng/ml), or insulin-like growth factor II (IGF-II/MSA) (100 ng/ml), but not somatostatin (1 ng/ml), on GH-stimulated lipolysis were prevented by LY83583 addition. Neither 8-bromo-cGMP, sodium nitroprusside, nor LY83583 altered GH-induced inhibition of glucagon (1 ng/ml)-stimulated lipolysis. It is proposed that cGMP may mediate inhibitory control of GH-stimulated lipolysis by insulin, IGF-I, and IGF-II in chicken adipose tissue.  相似文献   

14.
Large (greater than 22 microns) and small (12-21 microns) luteal cells from Day 8 pregnant rats were separated by elutriation after enzyme dissociation. Aliquots of cells were incubated for 4 h at 37 degrees C in Medium 199 alone (control) or with medium containing dibutyryl cyclic adenosine 3', 5'-monophosphate (cAMP) at 0.5 mM or 5 mM; rat luteinizing hormone (LH) at doses of 1, 10, 100, or 1000 ng/ml; 10 micrograms/ml 25-OH-cholesterol; or 10 ng/ml testosterone. Production of progesterone, testosterone, and estradiol was measured by radioimmunoassay. Both cell types showed a similar increase in estradiol synthesis when stimulated with LH (1 microgram/ml) or dibutyryl cAMP (5 mM); however, large luteal cells aromatized exogenous testosterone, whereas small luteal cells did not. Large luteal cells produced increased amounts of progesterone at lower doses of dibutyryl cAMP (0.5 mM) and LH (10 ng/ml), compared to small cells, which required 5 mM dibutyryl cAMP or 1 microgram/ml LH for minimal stimulation. Dibutyryl cAMP (5 mM) also resulted in an increase of testosterone release from small luteal cells. Progesterone synthesis in both cell types was enhanced by 25-OH-cholesterol. These results suggest that the two cell types differ functionally with respect to steroidogenesis during pregnancy, and that the large luteal cells appear to be the primary site of progesterone and estradiol production at this stage of pregnancy.  相似文献   

15.
Synthetic somatostatin stimulated cyclic GMP accumulation with dose dependency (10 ng/ml – 10 μg/ml in a dose examined) in rat anterior pituitary gland in vitro. The stimulation of cyclic GMP levels in the gland was observed after 2 min incubation with somatostatin. Cyclic AMP production induced by TRH or PGE1 was supressed by this GH release inhibiting factor, while cyclic GMP concentration in the gland was elevated. The present results seem to suggest that inhibitory effect on GH release by somatostatin in anterior pituitary gland is mediated through change in concentration of cyclic AMP and cyclic GMP in the target cells.  相似文献   

16.
d-glyceraldehyde stimulated insulin secretion from isolated rat pancreatic islets in static incubation and perifusion systems. At low concentrations (2–4 mM) d-glyceraldehyde was a more potent secretagogue than glucose. The insulinotropic action of 15 mM d-glyceraldehyde was not affected by d-mannoheptulose, was potentiated by cytochalasin B (5 μg/ml) and theophylline (4 mM), and was inhibited by both adrenalin (2 μM) and somatostatin (10 μg/ml). D-glyceraldehyde at a concentration of 1.5 mM produced a 10-fold increase of l-[4,5-3 H]leucine incorporation into proinsulin and insulin without a significant increase into other islet proteins. Glucose at 1.5 mM did not stimulate proinsulin biosynthesis. d-Glyceraldehyde at concentrations higher than 1.5 mM, in marked contrast to glucose, progressively inhibited incorporation of labelled leucine into proinsulin + insulin and other islet proteins. d-glyceraldehyde also inhibited the oxidation of glucose. l-Glyceraldehyde did not stimulate proinsulin biosynthesis and had less effect than the d-isomer on insulin release and glucose oxidation. The results strongly suggest that metabolites below d-glyceraldehyde-3-P are signals for insulin biosynthesisand release. Interaction of d-glyceraldehyde with a “membrane receptor” cannot, however, be excluded with certainty.  相似文献   

17.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

18.
The pancreatic tumor cells (In 111) derived from BK virus-induced insulinoma of Syrian golden hamsters were maintained in culture for several passages and were studied for their insulin secretory ability under various stimulatory conditions. Insulin release was not increased by D-glucose stimulation (27.8 mM), while dibutyryl cyclic AMP (1 mM), theophylline (1 mM), 3-isobutyl-l-methylxanthine (0.1 mM) and elevation of medium calcium from 0.5 to 2.7 mM stimulated insulin release 2.5- to 4-fold. There was a concomitant increase of medium cyclic AMP with addition of theophylline. Streptozotocin (2 mM) treatment for 48 hours significantly reduced insulin release, while alloxan (2 mM), had no inhibitory effect on insulin release. The results indicate that while in vitro-maintained islet tumor cells, In 111, have a cyclic AMP-mediated process involved in insulin secretion analogous to normal beta cells, these cells lack the ability to recognize glucose as an insulin secretagogue probably due to a defect in the cell membrane, though the possibility of alteration in glucose metabolism cannot be fully excluded.  相似文献   

19.
The antigen-induced IgE-mediated release of histamine from human basophils has previously been shown to require calcium, to be inhibited by agents which raise cyclic AMP levels and by high antigen levels, and to be unaffected by cyclic GMP. The interrelationship between these phenomena has been studied. The major findings are: 1) in the region of antigen-excess inhibition dibutyryl cyclic AMP potentiates release; 2) antigen-excess inhibition is seen at lower antigen concentrations when the calcium concentration is reduced from 0.6 to 0.1 mM; and 3) cyclic GMP modestly potentiates release when the calcium concentration is 0.1 mM.  相似文献   

20.
Enhancement of adipose S-100 protein release by catecholamines   总被引:2,自引:0,他引:2  
When rat epididymal fat-pad pieces were incubated in vitro with 10 microM epinephrine, S-100 protein in the tissue was markedly decreased by release into the medium. The release of adipose S-100 protein was also enhanced by norepinephrine (10 microM), isoproterenol (10 microM), and dibutyryl cyclic AMP (5 mM), but not by insulin (0.8 microM). The enhancement of S-100 protein release by 10 microM epinephrine was completely inhibited by 10 microM propranolol. These results suggest that the release of adipose S-100 protein is regulated by the beta-adrenergic effect of catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号