首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iontophoretic and micropressure drug application and lesion techniques were used to investigate the cellular source of rat limbic system epileptiform responses to opioid peptides [19]. Iontophoretically applied morphine, methionine enkephalin or beta-endorphin inhibited the spontaneous or glutamate-activated firing of the great majority of single neurons in medial and lateral septum, amygdala and cingulate cortex. These inhibitions in firing were antagonized by iontophoresis of naloxone. In contrast to inhibitory effects in other limbic areas, morphine and the opioid peptides predominantly excited CA1 and CA3 pyramidal neurons in a naloxone-sensitive manner, as previously reported [36]. On rare occasions, iontophoretically applied beta-endorphin evoked repetitive waveforms similar to interictal population EPSPs or spikes. Micropressure application of opiates and peptides also excited hippocampal neurons indicating such responses were not current-induced artefacts. The possible role of the excitatory cholinergic septal hippocampal pathway in the facilitatory response of hippocampal units to the opiates was tested with iontophoretically applied atropine and scopolamine, or lesions of septal nuclei. None of these manipulations reduced the opioid-induced excitations; rather, septal lesions enhanced excitatory and epileptiform responses to the opiates. These results support the hypothesis that opiate-evoked epileptiform activity in the limbic system arises from enhanced pyramidal cell activity in the hippocampal formation, probably by a non-cholinergic mechanism.  相似文献   

2.
The mechanisms whereby the caudate nucleus modifies hippocampal spiking activity have been studied. Epileptiform activity was induced in the cat hippocampus by topical application of sodium penicillin in different concentrations. The frequency of induced spikes appeared to be directly correlated to the two doses of epileptogenic agent. The inhibitory effect of 10 Hz caudate stimulation on spike frequency was present even when stimulation lasted for 180 s. Likewise 25 Hz caudate stimulation brought about an inhibition which was maintained by stimulus trains lasting up to 90 s, while the degree of inhibition was reduced by trains of longer duration (120, 150 and 180 s); similar results were also noted in some atropine-treated cats. The time course of spikes in cats with electrolytic lesions of the caudate exhibited an increase in both frequency and duration. The results indicate that there is an optimal parameter for caudate stimulation causing inhibition of penicillin-induced hippocampal spiking activity, and suggest the possibility of tonic control of hippocampal excitability exerted by the caudate nucleus.  相似文献   

3.
胡中庭  王庆平 《生理学报》1992,44(4):355-361
Sokoloff's 2-deoxyglucose (2-DG) autoradiographic technique was used to identify changes of glucose metabolic rate in the rat brain following unilateral stimulation of the head of the caudate nucleus. The results were as follows. The local glucose metabolic rate after noxious stimulation was increased in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area, habenular nucleus, head of caudate nucleus, periaqueductal gray (PAG) and dorsal raphe nucleus (P < 0.05). After stimulating the head of the caudate nucleus, the local glucose metabolic rate of nucleus raphe magnus (rm) and nucleus paragigantocellularis (pgcl) was increased significantly and that of the PAG and dorsal raphe nucleus had a tendency to increase, while stimulation of the head of caudate nucleus could partially abolish the increased glucose metabolic rate in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area and habenular nucleus as induced by noxious stimulation. These results suggest that caudate stimulation is able to depress the activation of some brain structures related to nociception and to activate those related to antinociception. The pgcl, rm, PAG and dorsal raphe nucleus might be the key structures participating in the caudate stimulation produced analgesia.  相似文献   

4.
本文利用[~3H]-2脱氧葡萄糖定量放射自显影方法,研究了电刺激大鼠尾核头部镇痛时中枢神经系统有关结构的葡萄糖代谢率变化。结果表明,痛刺激后,皮层躯体感觉Ⅰ,Ⅱ区、扣带回皮质、丘脑束旁核、丘脑中央中核、丘脑腹后核、尾核、外侧缰核、外侧隔核、中缝背核及中脑导水管周围灰质等结等的葡萄糖代谢率均明显升高(P<0.05)。电刺激大鼠尾核头部后,中缝大核及延髓旁巨细胞网状外侧核的葡萄糖代谢率显著升高,中脑导水管周围灰质和中缝背核的葡萄糖代谢率亦有升高趋势。电刺激大鼠尾核头部可部份降低痛刺激引起的有关结构葡萄糖代谢率升高(如皮层躯体感觉Ⅰ、Ⅱ区、扣带回皮质、丘脑束旁核、丘脑中央中核、丘脑腹后核、外侧隔核及外侧缰核等)。上述结果提示,电刺激大鼠尾核头部镇痛时抑制了与痛感觉有关的结构,同时激活了与镇痛有关的结构。中缝大核、中缝背核、中脑导水管周围灰质及延髓旁巨细胞网状外侧核等结构是实现尾核镇痛的重要环节。  相似文献   

5.
This study investigated the response of hippocampal RSA, recorded from electrodes in CA1 and the contralateral dentate gyrus of urethane-anaesthetized rats, to atropine sulphate administered at 15 min intervals in a cumulative dose-response schedule (1, 3, 10, 50 and 50 mg x kg(-1) i.p.). The power of CA1 and dentate gyrus RSA in the 3-7 Hz band was increased after administering the first 3 doses of atropine (1, 3 and 10 mg x kg(-1) cumulatively) in rats held in the stereotaxic frame or removed from the frame and given electrical sensory stimulation to the base of the tail. This increase in RSA was dependent on sensory input, since it was not seen in animals outside the frame unless sensory stimulation was given, and it was abolished by increasing the dose of atropine (an additional 50 and 50 mg x kg(-1) cumulatively). Methylatropine (6 mg x kg(-1) i.p.) did not increase RSA power. The biphasic effect of atropine on sensory-evoked hippocampal RSA activity may be explained by differential effects at pre- and post-synaptic sites e.g. in the septo-hippocampal system or on pathways processing sensory information.  相似文献   

6.
To investigate the relationship between the hippocampal [symbol: see text] activity (or Rhythmical Slow Activity, RSA) and the hippocampal serotonergic activity during spontaneous behavior, simultaneous recordings of i) hippocampal EEG, ii) sleep-wake activity, and iii) hippocampal levels of the serotonin (5-HT) metabolite 5-hydroxyndolacetic acid (5-HIAA--measured by in vivo voltammetry and infrared telemetry) were performed. The results show that hippocampal type 1 RSA recorded during wakefulness and voluntary movements (such as walking), is positively correlated to hippocampal 5-HIAA levels. Since in the experimental conditions used in the study, 5-HIAA levels are a reliable index of 5-HT release, the results support the hypothesis that hippocampal type 1 RSA is generated by a serotonergic mechanism. In contrast, hippocampal type 2 RSA recorded during desynchronized sleep is negatively correlated with 5-HT release, suggesting a different neurochemical mechanism for its production. These results also show that, in the experimental condition of this study, hippocampal RSA power spectrum has a main peak frequency of 3.5 during wakefulness, and of 6.5 Hz during desynchronized sleep.  相似文献   

7.
本文采用电极阵列检测技术,在大鼠海马脑切片上诱导出稳定的癫痫样放电,分析、研究130 Hz的高频电刺激(high-frequency stimulation,HFS) CA3区时,海马切片在癫痫发作间期放电(inter-ictal discharges,IID)和发作期放电(ictal discharges,ID)的各项参数、癫痫样放电地起始位点、传播方向和传输速率以及各频段的功率谱密度.结果显示:高频电刺激可以有效地降低癫痫发作期的幅值、减少持续时间、增长潜伏时间、抑制癫痫样放电由IID向ID的转变等.提示高频电刺激抑制癫痫的作用机制是通过促进神经元之间的抑制性传输系统,并且抑制海马神经元之间的兴奋性连接,从而达到抑制效果.  相似文献   

8.
The different actions exerted by pallidum and caudate nucleus on electrically induced epileptic activity of hippocampus were analyzed. Caudate appeared to inhibit hippocampal after discharges duration (HAD) while the globus pallidus exerted a facilitatory effect on HAD duration. Both effects were maximal when conditioning stimulation immediately preceded hippocampal test stimulation. The results are discussed considering reciprocal functional connections of the two striatal structures.  相似文献   

9.
To determine if electrophysiological properties of hippocampal pathways are altered after medial septal area (MSA) destruction, extracellular recordings were made from hippocampal slices of rats 30 days following lesion and compared with those from unoperated controls. The preparation of slices, data accumulation and data analyses were done under the same conditions. The electrophysiological parameters of interest were the population spike (PS) and the field EPSP, produced in the CA1 pyramidal layer by stimulation of the Schaffer collaterals. The principal finding of this study was that neuronal excitability in slices from MSA-lesioned rats was altered. The most striking abnormalities were an epileptiform activity, which consisted of multiple PSs, and multiple seizure-like after discharges with a delayed onset to low stimulation intensities. In the CA1 region of the slices collected from lesioned rats the input-output curve of field EPSP versus PS showed a leftward shift as compared with their counterparts in normal slices. These changes may be related to relative reduction of inhibitory processes in interneuronal circuits of CA1 region.  相似文献   

10.
It was shown by the technique of conditioned-reflex activation of a functional epileptogenic focus that seizure activity in response to a conditioning stimulus in rabbits and cats arises exclusively in the hippocampus, even if the epileptogenic focus is created by electrical stimulation of the septum or amygdala. During stimulation of the hippocampus itself, "spontaneous" reactivation of seizure activity took place, but in response to the conditioning stimulus only an increase in the frequency and strength of the spontaneous epileptiform activity was observed. Conditioned-reflex seizure activity was much more marked in rabbits than in cats. After bilateral electrolytic injury to the septal region no marked seizure activity was observed in rabbits in response to a conditioning stimulus. In that case there was only an increase in the frequency of spontaneous epileptiform activity in the hippocampus. It is concluded that the hippocampus, with its synchronizing function, can perform the role of initiator of seizure activity, and the functional link between the septum and hippocampus brings about its final synchronization.  相似文献   

11.
In the rat, long-term clomipramine increases the firing rate in lateral septal neurons. Although the hippocampus is the main afference for septal nuclei, it is unknown whether clomipramine increases the firing rate in most of hippocampal-septal neurons. Therefore, the present study explored the actions of long-term clomipramine in lateral septal neurons identified by their relation to the hippocampus. In most recordings, hippocampal stimulation produced a brief excitatory short-latency response, followed by a period of inhibition of firing. These neurons increased their firing rate after clomipramine treatment. Other septal neurons not respondent to hippocampal stimulation did not respond to clomipramine treatment, either. We concluded that only hippocampal-septal neurons are clomipramine responders too, and the drug-induced enhancement of firing rate is likely to be mediated by an interneuron-mediated disinhibition process.  相似文献   

12.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

13.
In view of evidence indicating that endogenous opiate-like peptides have epileptiform effects, we examined the effect of the opiate antagonist naloxone on the kindling of seizures produced by repeated electrical stimulation of the amygdala or the caudate nucleus in rats. Naloxone had no effect on the threshold for local after-discharge in the two areas and failed to retard the rate of kindling of clinical seizures. These results suggest that an interaction of opiate-like peptides with central opiate receptors does not play any critical role in the kindling of seizures.  相似文献   

14.
Comparative analysis of characteristics of rhythmic theta-activity in the neurones of the medial septal nucleus and nucleus of diagonal band was performed in intact rabbits after. i. v. injection of pentobarbital, and in rabbits with chronic lesion of the ascending brain-stem afferent fibers. In both conditions theta-bursts disappeared in some cells with unstable periodic rhythmic modulation; substantial population of the septal units preserved regular burst activity. Main characteristics of theta-bursts were almost identical in both states, their mean frequency decreased to 3.5 Hz. The theta-rhythm in hippocampal EEG was usually absent; but low-frequency rhythmic activity could be evoked by electrical or sensory stimulation as well as by injection of bemegrid or physostigmine. The data show that the ascending brain-stem afferents control: the frequency of the bursts in a population of septal units regarded as bursting pace-maker cells; the total number of the septal cells secondarily (synaptically) involved into rhythmic activity. The effect of pentobarbital upon theta-rhythm results from elimination of these influences upon the septal cells.  相似文献   

15.
The evidence for the role of serotonergic and noradrenergic effects on the septohippocampal theta oscillations obtained by the author and her colleagues are reviewed. Analysis of neuronal activity in the medial septal area or hippocampus and hippocampal EEG simultaneously recorded in awake rabbits exposed to different kinds of brainstem influences led to the following conclusions. 1. Serotonergic median raphe nucleus and noradrenergic locus ceruleus act as functional antagonists in theta regulation: the former structure restricts the theta rhythm generation, whereas the latter enhances this process. 2. Both transmitter systems control sensory reactions of septal and hippocampal neurons through up and down regulation of the theta activity. 3. When continuous theta activity induced by various experimental manipulations is recorded, responsiveness of septohippocampal neurons to sensory stimulation is strongly reduced. These findings provide support for the view that the theta oscillations act as an active filter in the information selection and registration. Interaction of different transmitter systems in the theta rhythm control as well as attention and memory is discussed.  相似文献   

16.
Primary cultures of fetal rat septal neurons were used to identify a membrane-associated cholinergic neurotrophic activity. Under serum-free culture conditions, approximately 98% of the septal cells are neurons, and approximately 6% of the neurons are cholinergic as determined immunocytochemically. Crude membranes prepared from rat hippocampal homogenates stimulate choline acetyltransferase (ChAT) activity in treated septal neurons. The membrane-associated trophic activity is apparent at lower protein concentrations than activity present in the soluble fraction and is unevenly distributed in various brain regions; it is highest in hippocampus and striatum and negligible in cerebellum. Membrane trophic activity is developmentally regulated, is heat and trypsin sensitive, and increases the rate of expression of ChAT in septal neurons. Upon gel filtration chromatography of a high-salt membrane extract, trophic activity elutes as a broad peak in the 500 kilodalton (kD) molecular mass range. Stimulation of septal neuronal ChAT activity by either crude membranes or partially purified preparations is not inhibited by antibodies against nerve growth factor (NGF), and its maximal activity is additive to maximally active doses of NGF. The results indicate that hippocampal membranes contain cholinergic neurotrophic activity which may be important for the development of septal cholinergic neurons.  相似文献   

17.
Accumulation of inositol-1-phosphate after labeling with [3H]inositol and stimulation with noradrenaline, carbachol, and serotonin was measured in rat cortical, caudate nucleus, and hippocampal slices. The response to noradrenaline was significantly increased in cortical slices from animals that had received either a single electroconvulsive shock (ECS) or a series of 10 daily ECS but was unchanged in caudate nucleus or hippocampal slices. The response to carbachol, a muscarinic cholinergic agonist, was unchanged in cortical or caudate nucleus slices but was significantly reduced in hippocampal slices from animals that had received chronic ECS. The response to serotonin in cortical slices was not affected by the treatment. The results are correlated with changes in receptor number, which have been demonstrated to occur after administration of ECS.  相似文献   

18.
Hippocampal EEG was recorded in behaving rats in which the brain stem afferents to the septal region were previously damaged. In these animals rhythmic slow activity (RSA or theta) was continuously present, including drinking and immobility. The average frequency of RSA, however, was significantly higher during running (8-9 Hz) than during drinking or awake motionless state (6-8 Hz). In normal rats irregular sharp waves, rather than RSA were present during drinking and immobility. The results suggest that brain stem afferents are necessary to suppress the rhythmic firing of septal "pacemaker" cells.  相似文献   

19.
The effect of electrical stimulation of the medial nucleus of the septum and of hippocampal area CA1 on subicular neurons with three different types of spontaneous activity (with theta-modulation, with delta-modulation and complex spikes, and with irregular single-spike activity) was studied in unanesthetized rabbits by extracellular recording of unit activity. Cells with theta-activity were found to respond in a distinctive functional manner to stimulation of the medial nucleus of the septum: Their reactivity was higher but latent periods of their responses were much shorter than those of cells with delta-activity and irregular discharges. Stability of modulation of theta-cell activity increased both during and after stimulation of the medial septal nucleus. Electrical stimulation of hippocampal area CA1, on the other hand, led to disappearance of rhythm modulation. Average response latencies of all three types of cells to stimulation of area CA1 were equal. The results indicate special properties of the septal input to subicular cells with theta-modulation.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 326–333, May–June, 1985.  相似文献   

20.
The parameters of cortical electrical stimulation (ES) producing synaptically-operated spreading depression (SD) were determined in rats. Waves of SD were regularly triggered in the thalamus by brief, high frequency ES (0.02–0.05 sec; 200–500 Hz) of the parietal cortex. Monitoring by EEG confirmed the lack of accompanying convulsive activity in the cortex and the subcortical structures investigated. Use of Nembutal-induced anesthesia led to a higher minimum threshold for onset of SD, without preventing short-latency thalamid SD. Stimulating the parietal cortex was less effective for synaptic excitation of hippocampal and caudate SD. Hippocampal, unlike thalamic SD, was accompanied by spells of epileptiform activity, most pronounced at certain points in the onset and decline of the SD wave. These brief convulsive episodes were not the cause but the result of SD to a large extent. The low, subconvulsive threshold of synaptically triggered subcortical as well as cortical structures should therefore be taken into account when considering the functional significance of the SD reaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 36–44, January–February, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号