首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burkard ME  Turner DH 《Biochemistry》2000,39(38):11748-11762
Nucleotides in RNA that are not Watson-Crick-paired form unique structures for recognition or catalysis, but determinants of these structures and their stabilities are poorly understood. A single noncanonical pair of two guanosines (G) is more stable than other noncanonical pairs and can potentially form pairing structures with two hydrogen bonds in four different ways. Here, the energetics and structure of single GG pairs are investigated in several sequence contexts by optical melting and NMR. The data for r(5'GCAGGCGUGC3')(2), in which G4 and G7 are paired, are consistent with a model in which G4 and G7 alternate syn glycosidic conformations in a two-hydrogen-bond pair. The two distinct structures are derived from nuclear Overhauser effect spectroscopic distance restraints coupled with simulated annealing using the AMBER 95 force field. In each structure, the imino and amino protons of the anti G are hydrogen bonded to the O6 and N7 acceptors of the syn G, respectively. An additional hydrogen-bond connects the syn G amino group to the 5' nonbridging pro-R(p) phosphate oxygen. The GG pair fits well into a Watson-Crick helix. In r(5'GCAGGCGUGC3')(2), the G4(anti), G7(syn) structure is preferred over G4(syn), G7(anti). For single GG pairs in other contexts, exchange processes make interpretation of spectra more difficult but the pairs are also G(syn), G(anti). Thermodynamic data for a variety of duplexes containing pairs of G, inosine, and 7-deazaguanosine flanked by GC pairs are consistent with the structural and energetic interpretations for r(5'GCAGGCGUGC3')(2), suggesting similar GG conformations.  相似文献   

2.
A crystal structure analysis of the synthetic deoxydodecamer d(CGCAAATTIGCG) which contains two adenosine.inosine (A.I) mispairs has revealed that, in this sequence, the A.I base-pairs adopt a A(anti).I(syn) configuration. The refinement converged at R = 0.158 for 2004 reflections with F greater than or equal to 2 sigma(F) in the range 7.0-2.5A for a model consisting of the DNA duplex and 71 water molecules. A notable feature of the structure is the presence of an almost complete spine of hydration spanning the minor groove of the whole of the (AAATTI)2 core region of the duplex. pH-dependent ultraviolet melting studies have suggested that the base-pair observed in the crystal structure is, in fact, a protonated AH+ (anti).I(syn) species and that the A.I base-pairs in the sequence studied display the same conformational variability as A.G mispairs in the sequence d(CGCAAATTGGCG). The AH+(anti).I(syn) base-pair predominates below pH 6.5 and an A(anti).I(anti) mispair is the major species present between pH 6.5 and 8.0. The protonated base-pairs are held together by two hydrogen bonds one between N6(A) and O6(I) and the other between N1(A) and N7(I). This second hydrogen bond is a direct result of the protonation of the N1 of adenosine. The ultraviolet melting studies indicate that the A(anti).I(anti) base-pair is more stable than the A(anti).G(anti) base-pair but that the AH+(anti).I(syn) base pair is less stable than its AH+(anti).G(syn) analogue. Possible reasons for this observation are discussed.  相似文献   

3.
Deoxyguanosine residues are hydroxylated by reactive oxygen species at the C-8 position to form 8-hydroxy-2'-deoxyguanosine (8-OG), one of the most important mutagenic lesions in DNA. Though the spontaneous G:C to C:G transversions are rare events, the pathways leading to this mutation are not established. An 8-OG:G mispair, if not corrected by DNA repair enzymes, could lead to G:C to C:G transversions. NMR spectroscopy and restrained molecular dynamics calculations are used to refine the solution structure of the base mismatch formed by the 8-OG:G pair on a self complementary DNA dodecamer duplex d(CGCGAATT(8-O)GGCG)(2). The results reveal that the 8-OG base is inserted into the helix and forms Hoogsteen base-pairing with the G on the opposite strand. The 8-OG:G base-pairs are seen to be stabilized by two hydrogen bonding interactions, one between the H7 of the 8-OG and the O6 of the G, and a three-center hydrogen bonding between the O8 of the 8-OG and the imino and amino protons of the G. The 8-OG:G base-pairs are very well stacked between the Watson-Crick base-paired flanking bases. Both strands of the DNA duplex adopt right-handed conformations. All of the unmodified bases, including the G at the lesion site, adopt anti glycosidic torsion angles and form Watson-Crick base-pairs. At the lesion site, the 8-OG residues adopt syn conformations. The structural studies demonstrate that 8-OG(syn):G(anti) forms a stable pair in the interior of the duplex, providing a basis for the in vivo incorporation of G opposite 8-OG. Calculated helical parameters and backbone torsional angles, and the observed 31P chemical shifts, indicate that the structure of the duplex is perturbed near lesion sites, with the local unwinding of the double helix. The melting temperature of the 8-OG:G containing duplex is only 2.6 deg. C less than the t(m) of the unmodified duplex.  相似文献   

4.
Transferred nuclear Overhauser effect measurements have been made on complexes of NADP+ and thioNADP+ with Lactobacillus casei dihydrofolate reductase to provide information about the glycosidic bond conformations in these complexes. Both NADP+ and thioNADP+ are shown to have very similar anti conformations about their adenine glycosidic bonds when bound to the enzyme. However, their nicotinamide glycosidic bond conformations are very different: while NADP+ binds in an exclusively anti conformation, thioNADP+ binds with a distribution of syn/anti conformations very similar to that observed in nicotinamide mononucleotides in free solution (approximately 50:50). Thus for thioNADP+, binding to the enzyme does not significantly perturb the potential function for rotation about the nicotinamide glycosidic bond. Earlier NMR studies [Hyde, E. I., Birdsall, B., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1980) Biochemistry 19, 3738] had indicated that large downfield 1H shifts of the nicotinamide ring protons (0.61-1.36 ppm) are detected on binding NADP+ while only very small shifts (less than 0.1 ppm) are observed in complexes with thioNADP+. The chemical shift and conformational findings are best explained if the thionicotinamide ring extends into solution making essentially no contacts with the enzyme.  相似文献   

5.
Two-dimensional 1H NMR studies on the dimeric hairpin quadruplex formed by d(G3T4G3) in the presence of either NaCl or KCl are presented. In the presence of either salt, the quadruplex structure is characterized by half the guanine nucleosides in the syn conformation about the glycosidic bond, the other half in the anti conformation, as reported for other similar sequences. However, 1H NOESY and 1H-31P heteronuclear correlation experiments demonstrate that the deoxyguanosines do not strictly alternate between syn and anti along individual strands. Thus we find the following sequences with regard to glycosidic bond conformation: 5'-G1SG2SG3AT4AT5A-T6AT7AG8SG9AG10A-3' and 5'-G11SG12AG13AT14AT1 5AT16AT17AG18SG19SG20A-3', where S and A denote syn and anti, respectively. This represents the first experimental evidence for a nucleic acid structure containing two sequential nucleosides in the syn conformation. The stacking interactions of the resulting quadruplex quartets and their component bases have been evaluated using unrestrained molecular dynamics calculations and energy component analysis. These calculations suggest that the sequential syn-syn/anti-anti and syn-anti quartet stacks are almost equal in energy, whereas the anti-syn stack, which is not present in our structure, is energetically less favorable by about 4 kcal/mol. Possible reasons for this energy difference and its implications for the stability of quadruplex structures are discussed.  相似文献   

6.
The tetrabutylammonium salt of guanosine 5'-monophosphate (5'-GMP) dissolves in DMSO-d6 forming aggregated species which exhibit some properties of reverse micelles. 1H NOESY experiments show that the 5'-GMP adopts the syn conformation about the glycosidic bond. Molecular mechanics calculations reveal a stable structure with this conformation in which the phosphate group and the amino group of the base are in close enough proximity to hydrogen bond. In contrast inosine 5'-monophosphate in DMSO-d6, which has no NH2 group for hydrogen bond stabilization of the syn conformation, is shown by NMR to have the anti structure. Guanosine in DMSO-d6 behaves differently from 5'-GMP. Guanosine adopts the anti conformation and forms a symmetric dimer via hydrogen bonding between the N3 and NH2 of the bases.  相似文献   

7.
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.  相似文献   

8.
Guanine-uracil (G.U) wobble base-pairs are a detrimental lesion in DNA. Previous investigations have shown that such wobble base-pairs are more prone to base-opening than the normal G.C base-pairs. To investigate the sequence-dependence of base-pair opening we have performed 5ns molecular dynamics simulations on G.U wobble base-pairs in two different sequence contexts, TGT/AUA and CGC/GUG. Furthermore, we have investigated the effect of replacing the guanine base in each sequence with a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Our results indicate that each sequence opens spontaneously towards the major groove in the course of the simulations. The TGT/AUA sequence has a greater proportion of structures in the open state than the CGC/GUG sequence. Incorporation of 6MI yields wobble base-pairs that open more readily than their guanine counterparts. In order of increasing open population, the sequences are ordered as CGC相似文献   

9.
Proton NMR studies at 250 MHz showed that ribofuranosyl and 2-deoxyribofuranosyl derivatives of N2-(p-n-butylphenyl)guanine (BuPG) favored the C2'-endo (S) sugar pucker and the gg exocyclic group rotamer, although less so than guanosine and 2'-deoxyguanosine themselves. The correlation calculated between C3'-endo (N) and gg conformational states in these compounds may result from destabilization of syn glycosidic bond conformers by the bulky N2 substituent. Results for a bis(ribofuranosyl) derivative of BuPG showed a strong correlation between N and gg states in both sugar rings, suggesting that both rings are anti and are stabilized by intramolecular hydrogen bonding between C3'-O and H8.  相似文献   

10.
The synthesis of 8-methoxy-2'-deoxyadenosine (moA) protected at N6 as an N,N-dimethylformamidine derivative and incorporation of the modified nucleoside into oligodeoxynucleotides via the phosphoramidite method are described. UV thermal denaturation studies were conducted on duplexes containing moA:G, moA:C and moA:T base pairs to determine the thermodynamic stability of duplexes containing moA relative to their adenosine (A)-containing counterparts. In the case of moA:G base pairs the effect of moA substitution is sequence dependent. In A:G mismatch-containing sequences, which have been shown by structural characterization to have a syn conformational preference at the glycosidic bond of A, moA substitution results in stabilization of the duplex. In contrast, in sequences where the A in the A:G mismatch has been shown to prefer the anti conformation moA substitution is destabilizing to the duplex. Thus moA may be a useful probe for investigating the conformational preferences of the N-glycosidic bond of adenosine within DNA. In addition, moA nucleoside is more resistant to acid-catalyzed depurination than previously described 8-bromo-2'-deoxyadenosine, allowing for facile incorporation into oligonucleotides via automated solid phase DNA synthesis.  相似文献   

11.
High-resolution proton and phosphorus nuclear magnetic resonance studies are reported on the self-complementary d(C1-G2-N3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplexes (henceforth called O6meG X A 12-mer when N3 = A3 and O6meG X G 12-mer when N3 = G3), which contain symmetry-related A3 X O6meG10 and G3 X O6meG10 interactions in the interior of the helices. We observe inter-base-pair nuclear Overhauser effects (NOE) between the base protons at the N3 X O6meG10 modification site and protons of flanking G2 X C11 and G4 X C9 base-pairs, indicative of the stacking of N3 and O6meG10 bases in both O6meG X A 12-mer and O6meG X G 12-mer duplexes. We have assigned all the base and a majority of the sugar protons from two-dimensional proton-correlated and nuclear Overhauser effect experiments on the O6meG X A 12-mer duplex and O6meG X G 12-mer duplex in solution. The observed NOEs establish that the A3 and O6meG10 at the modification site and all other residues adopt the anti configuration about the glycosidic bond, and that the O6meG X A 12-mer forms a right-handed duplex. The interaction between the bulky purine A3 and O6meG10 residues in the anti orientation results in large proton chemical shift perturbations at the (G2-A3-G4) X (C9-O6meG10-C11) segments of the helix. By contrast, we demonstrate that the O6meG10 residue adopts a syn configuration, while all other bases adopt an anti configuration about the glycosidic bond in the right-handed O6meG X G 12-mer duplex. This results in altered NOE patterns between the base protons of O6meG10 and the base and sugar protons of flanking C9 and C11 residues in the O6meG X G 12-mer duplex. The phosphorus backbone is perturbed at the modification site in both duplexes, since the phosphorus resonances are dispersed over 2 parts per million in the O6meG X A 12-mer and over 1 part per million in the O6meG X G 12-mer compared to a 0.5 part per million dispersion for an unperturbed DNA helix. We propose tentative pairing schemes for the A3 X O6meG10 and G3 X O6meG10 interactions in the above dodecanucleotide duplexes.  相似文献   

12.
We have conducted two dimensional NOESY studies on the molecule d(G2T5G2) to characterize the structure of the tetramolecular complex previously identified by calorimetric and spectroscopic studies (1). Analysis of the NOE and exchange cross peaks observed in the NOESY spectra establishes the formation of structured conformations at low temperature (5 degrees C). Significantly, within each strand of these structured conformations, the G1 and G8 residues adopt syn glycosidic torsion angles, while the G2 and G9 residues adopt anti glycosidic torsion angles. Consequently, any structure proposed for the tetramolecular complex of d(G2T5G2) must have alternating G(syn) and G(anti) glycosidic torsion angles within each strand. The implications of this observation for potential structures of the tetramolecular complex of d(G2T5G2) are discussed.  相似文献   

13.
Raman spectra were obtained from single crystals of [d(CGCATGCG)]2 and [d(m5CGTAm5CG)]2, both of which incorporate A-T pairs into Z-DNA structures and contain C2'-endo/syn conformers of deoxyguanosine at the oligonucleotide ends. Correlation with x-ray results permits the following Raman assignments for nucleoside conformers: C3'-endo/syn G, 623 +/- 1; C2'-endo/syn G, 671 +/- 2; C2'-endo/anti C, 782 +/- 1; C2'endo/anti T, 650 +/- 5 and ca. 750; C3'-endo/syn A, 729 +/- 1 cm-1. These results show that (i) the 670 cm-1 line of syn G is highly sensitive to the change from C3'-endo to C2'-endo pucker, (ii) the 729 cm-1 line of A is affected neither by furanose pucker nor glycosidic bond orientation and (iii) the 1200-1500 cm-1 region of the Raman spectrum of the A-T double helix is greatly altered by the B-to-Z transition. Conformation sensitive Raman frequencies in the 850-1700 cm-1 region are identified for both octamer and hexamer, and the Z-to-B transition of each is monitored by spectral changes which occur upon dissolving the crystal in H2O solution.  相似文献   

14.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

15.
SRSF2 (SC35) is a key player in the regulation of alternative splicing events and binds degenerated RNA sequences with similar affinity in nanomolar range. We have determined the solution structure of the SRSF2 RRM bound to the 5'-UCCAGU-3' and 5'-UGGAGU-3' RNA, both identified as SRSF2 binding sites in the HIV-1 tat exon 2. RNA recognition is achieved through a novel sandwich-like structure with both termini forming a positively charged cavity to accommodate the four central nucleotides. To bind both RNA sequences equally well, SRSF2 forms a nearly identical network of intermolecular interactions by simply flipping the bases of the two consecutive C or G nucleotides into either anti or syn conformation. We validate this unusual mode of RNA recognition functionally by in-vitro and in-vivo splicing assays and propose a 5'-SSNG-3' (S=C/G) high-affinity binding consensus sequence for SRSF2. In conclusion, in addition to describe for the first time the RNA recognition mode of SRSF2, we provide the precise consensus sequence to identify new putative binding sites for this splicing factor.  相似文献   

16.
It is known that oligonucleotides containing cyclonucleosides with a high anti (intermediate between anti and syn) glycosidic conformation adopt left-handed, single- and double-helical structures [Uesugi, S., Yano, J., Yano, E., & Ikehara, M. (1977) J. Am. Chem. Soc. 99, 2313-2323]. In order to see whether DNA can adopt the high anti left-handed double-helical structure or not, a self-complementary hexanucleotide containing 6,2'-O-cyclocytidine (C(o)), 8,2'-O-cycloguanosine (G(o)), thymidine, and deoxyadenosine, C(o)G(o)dTdAC(o)G(o), was synthesized. Imino proton NMR spectra and the results of nuclear Overhauser effect experiments strongly suggest that C(o)G(o)dTdAC(o)G(o) adopts a left-handed double-helical structure where the deoxynucleoside residues are involved in hydrogen bonding and take a high anti glycosidic conformation. A conformational model of the left-handed duplex was obtained by calculation with energy minimization. Thus it appears that DNA can form a high anti, left-handed double helix under some constrained conditions, which is quite different from that of Z-DNA.  相似文献   

17.
Proton and phosphorus two-dimensional NMR studies are reported for the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) nonanucleotide duplex (designated X.A 9-mer) that contains a 1,N2-propanodeoxyguanosine exocyclic adduct, X5, opposite deoxyadenosine A14 in the center of the helix. The NMR studies detect a pH-dependent conformational transition; this paper focuses on the structure present at pH 5.8. The two-dimensional NOESY studies of the X.A 9-mer duplex in H2O and D2O solution establish that X5 adopts a syn orientation while A14 adopts an anti orientation about the glycosidic bond at the lesion site. The large downfield shift of the amino protons of A14 demonstrates protonation of the deoxyadenosine base at pH 5.8 such that the protonated X5(syn).A14(anti) pair is stabilized by two hydrogen bonds at low pH. At pH 5.8, the observed NOE between the H8 proton of X5 and the H2 proton of A14 in the X.A 9-mer duplex demonstrates unequivocally the formation of the protonated X5(syn).A14(anti) pair. The 1,N2-propano bridge of X5(syn) is located in the major groove. Selective NOEs from the exocyclic methylene protons of X5 to the major groove H8 proton of flanking G4 but not G6 of the G4-X5-G6 segment provide additional structural constraints on the local conformation at the lesion site. A perturbation in the phosphodiester backbone is detected at the C13-A14 phosphorus located at the lesion site by 31P NMR spectroscopy. The two-dimensional NMR studies have been extended to the related complementary X.G 9-mer duplex that contains a central X5.G14 lesion in a sequence that is otherwise identical with the X.A 9-mer duplex. The NMR experimental parameters are consistent with formation of a pH-independent X5(syn).G14(anti) pair stabilized by two hydrogen bonds with the 1,N2-propano exocyclic adduct of X5(syn) located in the major groove.  相似文献   

18.
The quantum mechanical PCILO method has been applied for the determination of conformational properties of 8-amino- and 8-dimethylaminoadenosine 5'-monophosphate. Contrary to other 8-substituted nucleotides the amino derivative shows a preference for an anti arrangement about the glycosidic bond. This conformation is stabilized by an intramolecular hydrogen bond between the purine and the exocyclic group. 8-dimethylamino-adenosine-5'-monophosphate adopts the syn conformation with slightly rotated dimethylamino group. There is, however, a local minimum for the anti form associated with the unusual value of chiCN = 300 degrees. This minimum is probably populated when the nucleotide is bound to lactate dehydrogenase apoenzyme. No particularly strong interactions are necessary for the stabilization of the anti form. The computations account satisfactorily for the available experimental data.  相似文献   

19.
Structural distortions of DNA are essential for its biological function due to the genetic information of DNA not being physically accessible in the duplex state. Base flipping is one of the simplest structural distortions of DNA and may represent an initial event in strand separation required to access the genetic code. Flipping is also utilized by DNA-modifying and repair enzymes to access specific bases. It is typically thought that base flipping (or base-pair opening) occurs via the major groove whereas minor groove flipping is only possible when mediated by DNA-binding proteins. Here, umbrella sampling with a novel center-of-mass pseudodihedral reaction coordinate was used to calculate the individual potentials of mean force (PMF) for flipping of the Watson-Crick (WC) paired C and G bases in the CCATGCGCTGAC DNA dodecamer. The novel reaction coordinate allowed explicit investigation of the complete flipping process via both the minor and major groove pathways. The minor and major groove barriers to flipping are similar for C base flipping while the major groove barrier is slightly lower for G base flipping. Minor groove flipping requires distortion of the WC partner while the flipping base pulls away from its partner during major groove flipping. The flipped states are represented by relatively flat free energy surfaces, with a small, local minimum observed for the flipped G base. Conserved patterns of phosphodiester backbone dihedral distortions during flipping indicate their essential role in the flipping process. During flipping, the target base tracks along the respective grooves, leading to hydrogen-bonding interactions with neighboring base-pairs. Such hydrogen-bonding interactions with the neighboring sequence suggest a novel mechanism of sequence dependence in DNA dynamics.  相似文献   

20.
The DNA repair enzyme uracil DNA glycosylase (UDG) pinches the phosphodiester backbone of damaged DNA using the hydroxyl side chains of a conserved trio of serine residues, resulting in flipping of the deoxyuridine from the DNA helix into the enzyme active site. We have investigated the energetic role of these serine-phosphodiester interactions using the complementary approaches of crystallography, directed mutagenesis, and stereospecific phosphorothioate substitutions. A new crystal structure of UDG bound to 5'-HO-dUAAp-3' (which lacks the 5' phosphodiester group that interacts with the Ser88 pinching finger) shows that the glycosidic bond of dU has been cleaved, and that the enzyme has undergone the same specific clamping motion that brings key active site groups into position as previously observed in the structures of human UDG bound to large duplex DNA substrates. From this structure, it may be concluded that glycosidic bond cleavage and the induced fit conformational change in UDG can occur without the 5' pinching interaction. The S88A, S189A, and S192G "pinching" mutations exhibit 360-, 80-, and 21-fold damaging effects on k(cat)/K(m), respectively, while the S88A/S189A double mutant exhibits an 8200-fold damaging effect. A free energy analysis of the combined effects of nonbridging phosphorothioate substitution and mutation at these positions reveals the presence of a modest amount of strain energy between the compressed 5' and 3' phosphodiester groups flanking the bound uridine. Overall, these results indicate a role for these serine-phosphodiester interactions in uracil flipping and preorganization of the sugar ring into a reactive conformation. However, in contrast to a recent proposal [Parikh, S. S., et al. (2000) Proc Natl. Acad. Sci. 94, 5083], there is no evidence that conformational strain of the glycosidic bond induced by serine pinching plays a major role in the 10(12)-fold rate enhancement brought about by UDG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号