首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three non-capsid, phage-encoded proteins, pI, pIV and pXI, are required for assembly of the filamentous bacteriophage at the envelope of Escherichia coli. pIV forms the outer membrane component of the assembly site, and pI and pXI are predicted to form the cytoplasmic membrane component. pXI is the result of an in-frame internal translational initiation event in gene I and is identical with the carboxyl-terminal third of pI in amino acid sequence, membrane localization and topology. The two proteins share a cytoplasmic domain predicted to be an amphipathic helix, a transmembrane domain, and a periplasmic domain. By mutating the initiation site for pXI, a phage was made that produced only pI and was shown to absolutely require functional plasmid-encoded pXI for growth. Further mutational analysis was done to examine the functional determinants of the amphipathic helix and periplasmic domains of the pI and pXI proteins. The results show that the amphipathic helix region is very important for pI function but not for pXI function. Mutational analysis of the periplasmic domains of pI and pXI implies that these domains also perform separate functions, and suggests that the interaction between pI and pIV in the periplasm is critical for assembly. The results are discussed with regard to the separate roles that the pI and pXI proteins play in the overall process of phage assembly.  相似文献   

2.
The gene I protein (pI) of the filamentous bacteriophage f1 is required for the assembly of this virus. Antibodies specific to either the amino or carboxyl terminus of this protein were used to determine the location and topology of the gene I protein in f1-infected bacteria. pI is anchored in the inner membrane of Escherichia coli cells via a 20-amino-acid hydrophobic stretch, with its carboxyl-terminal 75 residues located in the periplasm and its amino-terminal 253 amino acids residing in the cytoplasm. By using the carboxyl-terminal pI antibody, a smaller protein, pI*, is also detected in f1-infected cells at a ratio of one to two molecules per molecule of pI. Analysis of proteins produced from a gene I amber mutant plasmid or bacteriophage suggests that pI* is most likely the result of an in-frame internal translational initiation event at methionine 241 of the 348-amino-acid pI. pI* is shown to be an integral inner membrane protein inserted in the same orientation as pI. The relation of the cellular locations of pI and pI* to some of the proposed functions of pI is discussed.  相似文献   

3.
Related outer membrane proteins, termed secretins, participate in the secretion of macromolecules across the outer membrane of many Gram-negative bacteria. In the pullulanase-secretion system, PulS, an outer membrane-associated lipoprotein, is required both for the integrity and the proper outer membrane localization of the PulD secretin. Here we show that the PulS-binding site is located within the C-terminal 65 residues of PulD. Addition of this domain to the filamentous phage secretin, pIV, or to the unrelated maltose-binding protein rendered both proteins dependent on PulS for stability. A chimeric protein composed of bacteriophage f1 pIV and the C-terminal domain of PulD required properly localized PulS to support phage assembly. An in vivo complex formed between the pIV-PulD65 chimera and PulS was detected by co-immunoprecipitation and by affinity chromatography.  相似文献   

4.
The filamentous phage-encoded gene IV protein is required at high levels for virus assembly, although it is not a constituent of the virion. It is an integral membrane protein that does not contain an extended hydrophobic region of the kind often required for stable integration in the inner membrane. Rather, like a number of Escherichia coli outer membrane proteins, pIV is rich in charged amino acid residues and is predicted to consist of extensive beta-sheet structures. In phage-producing cells, pIV is primarily detected in the outer membrane, while in cells that produce it from the cloned gene, pIV is found in both the inner and outer membranes. The protein is synthesized as a precursor. Following cleavage of the signal sequence and translocation into the periplasm, the mature form is initially found as a soluble species. Soluble pIV then integrates into the membrane with a half-time of one to two minutes. Neither phage assembly nor other phage proteins are needed for this membrane integration, and phage assembly does not require the presence of the soluble form. The gene IV protein may be part of the structure through which the assembling phage is extruded.  相似文献   

5.
Assembly and export of filamentous phage requires four non-capsid proteins: the outer membrane protein, pIV; the inner membrane proteins, pI and pXI; and a cytoplasmic host factor, thioredoxin. Chemical cross-linking of intact cells demonstrates a trans-membrane complex containing pI and pIV. Formation of the complex protects pI from proteolytic cleavage by an endogenous protease. This protection also requires pXI, which is identical to the C-terminal portion of pI. This indicates that pXI, which is required for phage assembly in its own right, is also part of the complex. This complex forms in the absence of any other phage proteins or the DNA substrate; hence, it represents the first preinitiation step of phage morphogenesis. On the basis of protease protection data, we propose that the preinitiation complex is converted to an initiation complex by binding phage DNA, thioredoxin and the initiating minor coat protein(s).  相似文献   

6.
Consistent with many other results indicating that SecA plays an essential role in the translocation of presecretory proteins across the Escherichia coli inner membrane, we previously found that a approximately 95% depletion of SecA completely blocks the export of periplasmic proteins in vivo. Surprisingly, we found that about 25% of the outer membrane protein (OMP) OmpA synthesized after SecA depletion was gradually translocated across the inner membrane. In this study we analyzed the export of several other OMPs after SecA depletion. We found that 25-50% of each OMP as well as an OmpA-alkaline phosphatase fusion protein was exported from SecA-deficient cells. This partial export was completely abolished by the SecA inhibitor sodium azide and therefore still required the participation of SecA. Examination of a variety of OmpA derivatives, however, ruled out the possibility that OMPs are selectively translocated in SecA-deficient cells because SecA binds to their N termini with unusually high affinity. Export after SecA depletion was observed in cells that lack SecB, the primary targeting factor for OMPs, but was abolished by partial inactivation of DnaK. Furthermore, OmpA could be isolated in a stable complex with DnaK. The data strongly suggest that OMPs require only a relatively low level of translocase activity to cross the inner membrane because they can be preserved in a prolonged export-competent state by DnaK.  相似文献   

7.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

8.
Translocation of precursor proteins across the cytoplasmic membrane in bacteria is mediated by a multi-subunit protein complex termed translocase, which consists of the integral membrane heterotrimer SecYEG and the peripheral homodimeric ATPase SecA. Preproteins are bound by the cytosolic molecular chaperone SecB and targeted in a complex with SecA to the translocation site at the cytoplasmic membrane. This interaction with SecYEG allows the SecA/preprotein complex to insert into the membrane by binding of ATP to the high affinity nucleotide binding site of SecA. At that stage, presumably recognition and proofreading of the signal sequence occurs. Hydrolysis of ATP causes the release of the preprotein in the translocation channel and drives the withdrawal of SecA from the membrane-integrated state. Hydrolysis of ATP at the low-affinity nucleotide binding site of SecA converts the protein into a compact conformational state and releases it from the membrane. In the absence of the proton motive force, SecA is able to complete the translocation stepwise by multiple nucleotide modulated cycles. Received: 4 August 1995 / Accepted: 9 October 1995  相似文献   

9.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

10.
Infection of Escherichia coli by the filamentous bacteriophage f1 is initiated by interaction of the end of the phage particle containing the gene III protein with the tip of the F conjugative pilus. This is followed by the translocation of the phage DNA into the cytoplasm and the insertion of the major phage capsid protein, pVIII, into the cytoplasmic membrane. DNA transfer requires the chromosomally encoded TolA, TolQ, and TolR cytoplasmic membrane proteins. By using radiolabeled phages, it can be shown that no pVIII is inserted into the cytoplasmic membrane when the bacteria contain null mutations in tolQ, -R and -A. The rate of infection can be varied by using bacteria expressing various mutant TolA proteins. Analysis of the infection process in these strains demonstrates a direct correlation between the rate of infection and the incorporation of infecting bacteriophage pVIII into the cytoplasmic membrane.  相似文献   

11.
A 55-amino acid segment, normally present between residues 241 and 295 of the 348-residue gene I protein of the filamentous bacteriophage f1, acts as an internal signal sequence for gene I protein or, when present in fusion proteins, for EcoRI endonuclease or alkaline phosphatase. The resulting proteins are inserted so that they span the membrane with sequences on the amino side of the 55-residue segment in the cytoplasm and those near the carboxy side outside the cytoplasmic membrane. The presence of these proteins in the membrane results in the rapid inhibition of cell growth, probably from a loss of the membrane potential. We describe some of the elements in this 55-residue segment that appear to be crucial for its interaction with the membrane.  相似文献   

12.
SecA is a dynamic protein that undergoes ATP-dependent membrane cycling to drive protein translocation across the Escherichia coli inner membrane. To understand more about this process, azide-resistant (azi) and signal sequence suppressor (prlD) alleles of secA were studied. We found that azide resistance is cold sensitive because of a direct effect on protein export, suggesting that SecA-membrane interaction is regulated by an endothermic step that is azide inhibitable. secG function is required for expression of azide-resistant and signal sequence suppressor activities of azi and prlD alleles, and in turn, these alleles suppress cold-sensitive and export-defective phenotypes of a secG null mutant. These remarkable genetic observations support biochemical data indicating that SecG promotes SecA membrane cycling and that this process is dependent on an endothermic change in SecA conformation.  相似文献   

13.
The gene IV protein of filamentous bacteriophages is an integral membrane protein required for phage assembly and export. A series of gene IV::phoA fusion, gene IV deletion, and gene IV missense mutations have been isolated and characterized. The alkaline phosphatase activity of the fusion proteins suggests that pIV lacks a cytoplasmic domain. Cell fractionation studies indicate that the carboxy-terminal half of pIV mediates its assembly into the membrane, although there is no single, discrete membrane localization domain. The properties of gene IV missense and deletion mutants, combined with an analysis of the similarities between pIVs from various filamentous phage and related bacterial export-mediating proteins, suggest that the amino-terminal half of pIV consists of a periplasmic substrate-binding domain that confers specificity to the assembly-export system.  相似文献   

14.
Besides SecA and SecB, Escherichia coli cells possess a signal recognition particle (SRP) to target exported proteins to the SecY translocon. Using chemical and site-specific cross-linking in vitro, we show that SRP recognizes the first signal anchor sequence of a polytopic membrane protein (MtlA) resulting in cotranslational targeting of MtlA to SecY and phospholipids of the plasma membrane. In contrast, a possible interaction of SRP with the secretory protein pOmpA is prevented by the association of trigger factor with nascent pOmpA. Trigger factor also prevents SecA from binding to the first 125 amino acids of pOmpA when they are still associated with the ribosome. Under no experimental conditions was SecA found to interact with MtlA. Likewise, virtually no binding of trigger factor to ribosome-bound MtlA occurs even in the complete absence of SRP. Collectively, our results indicate that at the stage of nascent polypeptides, polytopic membrane proteins are selected by SRP for co-translational membrane targeting, whereas secretory proteins are directed into the SecA/SecB-mediated post-translational targeting pathway by means of their preferential recognition by trigger factor.  相似文献   

15.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

16.
G Jander  J E Cronan  Jr    J Beckwith 《Journal of bacteriology》1996,178(11):3049-3058
Escherichia coli biotin ligase is a cytoplasmic protein which specifically biotinylates the biotin-accepting domains from a variety of organisms. This in vivo biotinylation can be used as a sensitive signal to study protein secretion and membrane protein insertion. When the biotin-accepting domain from the 1.3S subunit of Propionibacterium shermanii transcarboxylase (PSBT) is translationally fused to the periplasmic proteins alkaline phosphatase and maltose-binding protein, there is little or no biotinylation of PSBT in wild-type E. coli. Inhibition of SecA with sodium azide and mutations in SecB, SecD, and SecF, all of which slow down protein secretion, result in biotinylation of PSBT. When PSBT is fused to the E. coli inner membrane protein MalF, it acts as a topological marker: fusions to cytoplasmic domains of MalF are biotinylated, and fusions to periplasmic domains are generally not biotinylated. If SecA is inhibited by sodium azide or if the SecE in the cell is depleted, then the insertion of the MalF second periplasmic domain is slowed down enough that PSBT fusions in this part of the protein become biotinylated. Compared with other protein fusions that have been used to study protein translocation, PSBT fusions have the advantage that they can be used to study the rate of the insertion process.  相似文献   

17.
《Journal of molecular biology》2019,431(10):2006-2019
Type II single-span membrane proteins, such as CadC or RodZ, lacking a signal sequence and having a far-downstream hydrophobic segment, require the SecA secretion motor for insertion into the inner membrane of Escherichia coli. Using two chimeric single-span proteins containing a designed hydrophobic segment H, we have determined the requirements for SecA-mediated secretion, the molecular distinction between TM domains and signal peptides, and the propensity for hydrophobic H-segments to remain embedded within the bilayer after targeting. By means of engineered H-segments and a strategically placed SPase I cleavage site, we determined how targeting and stability of the chimeric proteins are affected by the length and hydrophobicity of the H-segment. Very hydrophobic segments (e.g., 16 Leu) are stably incorporated into the inner membrane, resulting in a C-terminal anchored membrane protein, while a 24L construct was not targeted to the membrane by SecA and remained in the cytoplasm. However, a construct carrying preMalE at the N-terminus led to SecA targeting to SecYEG via the native signal sequence and stable insertion of the downstream 24L H-segment. We show that the RseP intramembrane protease degrades weakly stable H-segments and is a useful tool for investigating the borderline between stable and unstable TM segments. Using RseP cells, we find that moderately hydrophobic sequences (e.g., 5Leu + 11Ala) are targeted to SecYEG by SecA and inserted, but subsequently drop out of the membrane into the cytoplasm. Therefore, the free energy of transfer from translocon to bilayer is different from the transfer free energy from membrane to water.  相似文献   

18.
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.  相似文献   

19.
The translocation of secretory proteins derived from a Gram-positive (Staphylococcus hyicus prolipase) or a Gram-negative (Escherichia coli pre-OmpA protein) bacterium across the cytoplasmic membrane was studied in E. coli and Bacillus subtilis. in both microorganisms, the prolipase was found to be secreted across the plasma membrane when either the pre-prolipase signal peptide (38 amino acids in length) or the pre-OmpA signal peptide (21 amino acids in length) was used. Expression of the gene encoding the authentic pre-OmpA protein in B. subtilis resulted in the translocation of mature OmpA protein across the plasma membrane. Processing of the OmpA precursor in B. subtilis required the electrochemical potential and was sensitive to sodium azide, suggesting that the B. subtilis SecA homologue was involved in the translocation process. The mature OmpA protein, which was most likely present in an aggregated state, was fully accessible to proteases in protoplasted cells. Therefore, our results clearly demonstrate that an outer membrane protein can be secreted by B. subtilis, supporting the notion that the basic mechanism of protein translocation is highly conserved in Gram-positive and Gram-negative bacteria.  相似文献   

20.
To test the importance of N-terminal pre-sequences in translocation of different classes of membrane proteins, we exchanged the normal signal sequence of an Escherichia coli outer membrane protein, OmpF, for the pre-sequence of the inner membrane protein, DacA. The DacA-OmpF hybrid was efficiently assembled into the outer membrane in a functionally active form. Thus the pre-sequence of DacA, despite its relatively low hydrophobicity compared with that of OmpF, contains all the essential information necessary to initiate the translocation of OmpF to the outer membrane. Since processing of DacA was also shown to be dependent upon SecA we conclude that the initiation of translocation of this inner membrane polypeptide across the envelope occurs by the same mechanism as outer membrane and periplasmic proteins. The N-terminal 11 amino acids of mature OmpF, which in the hybrid are replaced by the N-terminal nine amino acids of DacA, carry no essential assembly signals since the hybrid protein is apparently assembled with equal efficiency to OmpF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号