首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   

2.
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.  相似文献   

3.
A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH < or = 6.5 is associated with the reduction of O2 by the reduced metal centers. At pH > or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.  相似文献   

4.
《BBA》2006,1757(9-10):1133-1143
In cytochrome c oxidase, oxido-reductions of heme a/CuA and heme a3/CuB are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e cooperative linkage at Fea3/CuB is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e linkage at heme a (and CuA). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/CuA and heme a3/CuB in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R  O transition), reductive (O  R transition) and a full catalytic cycle (R  O  R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e linkage at heme a/CuA and heme a3/CuB with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

5.
N Capitanio  G Capitanio  D Boffoli  S Papa 《Biochemistry》2000,39(50):15454-15461
Measurements of the H(+)/heme a, Cu(A) ratios for proton-electron coupling at these centers (redox Bohr effect) in CO-inhibited cytochrome c oxidase purified from bovine heart mitochondria, both in the soluble state and reconstituted in liposomes, are presented. In the soluble oxidase, the H(+)/heme a, Cu(A) ratios were experimentally determined upon oxidation by ferricyanide of these centers as well as upon their reduction by hexammineruthenium(II). These measurements showed that in order to obtain H(+)/heme a, Cu(A) ratios approaching 1, one-step full oxidation of both metal centers by ferricyanide had to be induced by a stoicheiometric amount of the oxidant. Partial stepwise oxidation or reduction of heme a and Cu(A) did produce H(+)/heme a, Cu(A) ratios significantly lower or higher than 1, respectively. The experimental H(+)/heme a, Cu(A) ratios measured upon stepwise reduction/oxidation of the metals were reproduced by mathematical simulation based on the coupling of oxido-reduction of both heme a and Cu(A) to pK shifts of common acid-base groups. The vectorial nature of the proton-electron coupling at heme a/Cu(A) was analyzed by measuring pH changes in the external bulk phase associated with oxido-reduction of these redox centers in the CO-inhibited oxidase reconstituted in liposomes. The results show that the proton release associated with the oxidation of heme a and Cu(A) takes place in the external aqueous phase. Protons taken up by the oxidase upon rereduction of the centers derive, on the other hand, from the inner space. These results provide evidence supporting the view that cooperative proton-electron coupling at heme a/Cu(A) is involved in the proton pump of the oxidase.  相似文献   

6.
A study is presented on the effect of zinc binding at the matrix side, on the proton pump of purified liposome reconstituted bovine heart cytochrome c oxidase (COV). Internally trapped Zn(2+) resulted in 50% decoupling of the proton pump at level flow. Analysis of the pH dependence of inhibition by internal Zn(2+) of proton release in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase indicates that Zn(2+) suppresses two of the four proton pumping steps in the cycle, those taking place when the 2 OH(-) produced in the reduction of O(2) at the binuclear center are protonated to 2 H(2)O. This decoupling effect could be associated with Zn(2+) induced conformational alteration of an acid/base cluster linked to heme a(3).  相似文献   

7.
Lepp H  Svahn E  Faxén K  Brzezinski P 《Biochemistry》2008,47(17):4929-4935
Cytochrome c oxidase couples electron transfer from cytochrome c to O 2 to proton pumping across the membrane. In the initial part of the reaction of the reduced cytochrome c oxidase with O 2, an electron is transferred from heme a to the catalytic site, parallel to the membrane surface. Even though this electron transfer is not linked to proton uptake from solution, recently Belevich et al. [(2006) Nature 440, 829] showed that it is linked to transfer of charge perpendicular to the membrane surface (electrogenic reaction). This electrogenic reaction was attributed to internal transfer of a proton from Glu286, in the D proton pathway, to an unidentified protonatable site "above" the heme groups. The proton transfer was proposed to initiate the sequence of events leading to proton pumping. In this study, we have investigated electrogenic reactions in structural variants of cytochrome c oxidase in which residues in the second, K proton pathway of cytochrome c oxidase were modified. The results indicate that the electrogenic reaction linked to electron transfer to the catalytic site originates from charge transfer within the K pathway, which presumably facilitates reduction of the site.  相似文献   

8.
In the reductive phase of its catalytic cycle, cytochrome c oxidase receives electrons from external electron donors. Two electrons have to be transferred into the catalytic center, composed of heme a(3) and Cu(B), before reaction with oxygen takes place. In addition, this phase of catalysis appears to be involved in proton translocation. Here, we report for the first time the kinetics of electron transfer to both heme a(3) and Cu(B) during the transition from the oxidized to the fully reduced state. The state of reduction of both heme a(3) and Cu(B) was monitored by a combination of EPR spectroscopy, the rapid freeze procedure, and the stopped-flow method. The kinetics of cytochrome c oxidase reduction by hexaamineruthenium under anaerobic conditions revealed that the rate-limiting step is the initial electron transfer to the catalytic site that proceeds with apparently identical rates to both heme a(3) and Cu(B). After Cu(B) is reduced, electron transfer to oxidized heme a(3) is enhanced relative to the rate of entry of the first electron.  相似文献   

9.
A direct kinetic analysis is presented of rapid proton-releasing reactions at the outer or C-side of the membrane, in ox heart and rat liver mitochondria, associated with aerobic oxidation of reduced terminal respiratory carriers in the presence of antimycin. Valinomycin plus K+ enhances the rate of cytochrome c oxidation and the rate and extent of H+ release. In the presence of valinomycin the leads to H+/e- ratio, computed on the basis of total electron flow from respiratory carriers to oxygen, varies with pH, remaining always lower than 1, and is unaffected by N-ethylmaleimide. 2-Heptyl-4-hydroxyquinoline N-oxide and 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, at concentrations which inhibit in the presence of antimycin the oxygen-induced reduction of b cytochromes, cause also a marked depression of the H+ release associated with aerobic oxidation of terminal respiratory carriers. Aerobic oxidation of the cytochrome system in mitochondria and of isolated b-c1 complex and cytochrome c oxidase results in scalar proton release from ionizable groups (redox Bohr effects). In mitochondria and submitochondrial particles, about 70% of the oxidoreductions of the components of the cytochrome system are linked to scalar proton transfer by ionizable groups. In isolated b-c1 complex scalar proton transfer, resulting from redox Bohr effect, amounts to 0.9H+ per Fe-S protein (190 muT). In isolated cytochrome c oxidase, Bohr protons amount to 0.8 per haem a + a3. The results presented indicate that the H+ release from mitochondria during oxidation of terminal respiratory carriers derives from residual antimycin-insensitive electron flow in the quinone-cytochrome c span and from redox Bohr effects in the b-c1 complex and cytochrome c oxidase. There is no sign of proton pumping by cytochrome oxidase during its transition from the reduced to the active 'pulsed' state and the first one or two turnovers.  相似文献   

10.
The H+/e- stoichiometry of reconstituted cytochrome c oxidase from bovine kidney, containing subunit VIaL (liver type), is 0.5 under standard conditions but 1.0 on addition of 1% cardiolipin to the lipid mixture (asolectin). Low concentrations of palmitate (half-maximal effect at 0.5 microm), but not laurate, myristate, stearate, oleate, 1-hexadecanol, palmitoyl glycerol and palmitoyl CoA, decreased the H+/e- ratio in the presence of cardiolipin from 1.0 to 0.5, accompanied by an increase of coupled, but not of uncoupled respiration of proteoliposomes. Cardiolipin and palmitate did not influence the H+/e- stoichiometry and respiration of reconstituted cytochrome c oxidase from bovine heart, containing subunit VIaH (heart-type). The H+/e- stoichiometry of the heart enzyme, however, is decreased from 1.0 to 0.5 by 5 mm intraliposomal ATP (instead of 5 mm ADP). It is assumed that palmitate binds to subunit VIaL. The partial uncoupling of proton pumping in cytochrome c oxidase is suggested to participate in mammalian thermogenesis.  相似文献   

11.
Membrane-bound heme-copper oxidases catalyze the reduction of O(2) to water. Part of the free energy associated with this process is used to pump protons across the membrane. The O(2) reduction reaction results in formation of high-pK(a) protonatable groups at the catalytic site. The free energy associated with protonation of these groups is used for proton pumping. One of these protonatable groups is OH(-), coordinated to the heme and Cu(B) at the catalytic site. Here we present results from EPR experiments on the Rhodobacter sphaeroides cytochrome c oxidase, which show that at high pH (9) approximately 50% of oxidized heme a(3) is hydroxide-ligated, while at low pH (6.5), no hydroxide is bound to heme a(3). The kinetics of hydroxide binding to heme a(3) were investigated after dissociation of CO from heme a(3) in the enzyme in which the heme a(3)-Cu(B) center was reduced while the remaining redox sites were oxidized. The dissociation of CO results in a decrease of the midpoint potential of heme a(3), which results in electron transfer (tau approximately equal 3 micros) from heme a(3) to heme a in approximately 100% of the enzyme population. At pH >7.5, the electron transfer is followed by proton release from a H(2)O molecule to the bulk solution (tau approximately equal 2 ms at pH 9). This reaction is also associated with absorbance changes of heme a(3), which on the basis of the results from the EPR experiments are attributed to formation of hydroxide-ligated heme a(3). The OH(-) bound to heme a(3) under equilibrium conditions at high pH is also formed transiently after O(2) reduction at low pH. It is proposed that the free energy associated with electron transfer to the binuclear center and protonation of this OH(-) upon reduction of the recently oxidized enzyme provides the driving force for the pumping of one proton.  相似文献   

12.
The catalytic mechanism, electron transfer coupled to proton pumping, of heme-copper oxidases is not yet fully understood. Microsecond freeze-hyperquenching single turnover experiments were carried out with fully reduced cytochrome aa(3) reacting with O(2) between 83 micros and 6 ms. Trapped intermediates were analyzed by low temperature UV-visible, X-band, and Q-band EPR spectroscopy, enabling determination of the oxidation-reduction kinetics of Cu(A), heme a, heme a(3), and of a recently detected tryptophan radical (Wiertz, F. G. M., Richter, O. M. H., Cherepanov, A. V., MacMillan, F., Ludwig, B., and de Vries, S. (2004) FEBS Lett. 575, 127-130). Cu(B) and heme a(3) were EPR silent during all stages of the reaction. Cu(A) and heme a are in electronic equilibrium acting as a redox pair. The reduction potential of Cu(A) is 4.5 mV lower than that of heme a. Both redox groups are oxidized in two phases with apparent half-lives of 57 micros and 1.2 ms together donating a single electron to the binuclear center in each phase. The formation of the heme a(3) oxoferryl species P(R) (maxima at 430 nm and 606 nm) was completed in approximately 130 micros, similar to the first oxidation phase of Cu(A) and heme a. The intermediate F (absorbance maximum at 571 nm) is formed from P(R) and decays to a hitherto undetected intermediate named F(W)(*). F(W)(*) harbors a tryptophan radical, identified by Q-band EPR spectroscopy as the tryptophan neutral radical of the strictly conserved Trp-272 (Trp-272(*)). The Trp-272(*) populates to 4-5% due to its relatively low rate of formation (t((1/2)) = 1.2 ms) and rapid rate of breakdown (t((1/2)) = 60 micros), which represents electron transfer from Cu(A)/heme a to Trp-272(*). The formation of the Trp-272(*) constitutes the major rate-determining step of the catalytic cycle. Our findings show that Trp-272 is a redox-active residue and is in this respect on an equal par to the metallocenters of the cytochrome c oxidase. Trp-272 is the direct reductant either to the heme a(3) oxoferryl species or to Cu (2+)(B). The potential role of Trp-272 in proton pumping is discussed.  相似文献   

13.
To study the functional significance of the unusual bimetallic Cu(A) center of cytochrome c oxidase, the direct ligands of the Cu(A) center in subunit II of the holoenzyme were mutated. Two of the mutant forms, M263L and H260N, exhibit major changes in activity (10% and 1% of wild-type, respectively) and in near-infrared and EPR spectra, but metal analysis shows that both mutants retain two coppers in the Cu(A) center and both retain proton pumping activity. In M263L, multifrequency EPR studies indicate the coppers are still electronically coupled, while all the other metal centers in M263L appear unchanged, by visible, EPR, and FTIR spectroscopy. Nevertheless, heme a3 is very slow to reduce with cytochrome c or dithionite under stopped-flow and steady-state conditions. This effect appears to be secondary to the change in redox equilibrium between Cu(A) and heme a. The studies reported here and in Wang et al. [Wang, K., Geren, L., Zhen, Y., Ma, L., Ferguson-Miller, S., Durham, B., and Millett, F. (2002) Biochemistry 41, 2298-2304] demonstrate that altering the ligands of Cu(A) can influence the rate and equilibrium of electron transfer between Cu(A) and heme a, but that the native ligation state is not essential for proton pumping.  相似文献   

14.
Properties of the two terminal oxidases of Escherichia coli.   总被引:13,自引:0,他引:13  
Proton translocation coupled to oxidation of ubiquinol by O2 was studied in spheroplasts of two mutant strains of Escherichia coli, one of which expresses cytochrome d, but not cytochrome bo, and the other expressing only the latter. O2 pulse experiments revealed that cytochrome d catalyzes separation of the protons and electrons of ubiquinol oxidation but is not a proton pump. In contrast, cytochrome bo functions as a proton pump in addition to separating the charges of quinol oxidation. E. coli membranes and isolated cytochrome bo lack the CuA center typical of cytochrome c oxidase, and the isolated enzyme contains only 1Cu/2Fe. Optical spectra indicate that high-spin heme o contributes less than 10% to the reduced minus oxidized 560-nm band of the enzyme. Pyridine hemochrome spectra suggest that the hemes of cytochrome bo are not protohemes. Proteoliposomes with cytochrome bo exhibited good respiratory control, but H+/e- during quinol oxidation was only 0.3-0.7. This was attributed to an "inside out" orientation of a significant fraction of the enzyme. Possible metabolic benefits of expressing both cytochromes bo and d in E. coli are discussed.  相似文献   

15.
Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans   总被引:12,自引:0,他引:12  
The proton translocating properties of cytochrome c oxidase in whole cells of Paracoccus denitrificans have been studied with the oxidant pulse method. leads to H+/2e- quotients have been measured with endogenous substrates, added methanol and added ascorbate (+TMPD) as reductants, and oxygen and ferricyanide as oxidants. It was found that both the observed leads to H+/O with ascorbate (+TMPD) as reductant, and the differences in proton ejection between oxygen-and ferricyanide pulses, with endogenous substrates or added methanol as a substrate, indicate that the P. denitrificans cytochrome c oxidase translocates protons with a stoichiometry of 2H+/2e-. The results presented in this and previous papers are in good agreement with recent findings concerning the mitochondrial cytochrome c oxidase, and suggest unequal charge separation by different coupling segments of the respiratory chain of P. denitrificans.  相似文献   

16.
Cytochrome c oxidase is a respiratory enzyme catalysing the energy-conserving reduction of molecular oxygen to water. The crystal structure of the ba(3)-cytochrome c oxidase from Thermus thermophilus has been determined to 2.4 A resolution using multiple anomalous dispersion (MAD) phasing and led to the discovery of a novel subunit IIa. A structure-based sequence alignment of this phylogenetically very distant oxidase with the other structurally known cytochrome oxidases leads to the identification of sequence motifs and residues that seem to be indispensable for the function of the haem copper oxidases, e.g. a new electron transfer pathway leading directly from Cu(A) to Cu(B). Specific features of the ba(3)-oxidase include an extended oxygen input channel, which leads directly to the active site, the presence of only one oxygen atom (O(2-), OH(-) or H(2)O) as bridging ligand at the active site and the mainly hydrophobic character of the interactions that stabilize the electron transfer complex between this oxidase and its substrate cytochrome c. New aspects of the proton pumping mechanism could be identified.  相似文献   

17.
The kinetics and stoichiometry of the redox-linked protonation of the soluble Paracoccus denitrificans cytochrome c oxidase were investigated at pH = 7.2-7.5 by multiwavelength stopped-flow spectroscopy, using the pH indicator phenol red. We compared the wild-type enzyme with the K354M and the D124N subunit I mutants, in which the K- and D-proton-conducting pathways are impaired, respectively. Upon anaerobic reduction by Ru-II hexamine, the wild-type enzyme binds 3.3 +/- 0.6 H(+)/aa(3), i.e., approximately 1 H(+) in excess over beef heart oxidase under similar conditions and the D124N mutant 3.2 +/- 0.5 H(+)/aa(3). In contrast, in the K354M mutant, in which the reduction of heme a(3)-Cu(B) is severely impaired, approximately 0.8 H(+) is promptly bound synchronously with the reduction of heme a, followed by a much slower protonation associated with the retarded reduction of the heme a(3)-Cu(B) site. These results indicate that complete reduction of heme a (and Cu(A)) is coupled to the uptake of approximately 0.8 H(+), which is independent of both H(+)-pathways, whereas the subsequent reduction of the heme a(3)-Cu(B) site is associated with the uptake of approximately 2.5 H(+) transferred (at least partially) through the K-pathway. On the basis of these results, the possible involvement of the D-pathway in the redox-linked protonation of cytochrome c oxidase is discussed.  相似文献   

18.
Functional and structural data are reviewed which provide evidence that proton pumping in cytochrome c oxidase is associated with extended allosteric cooperativity involving the four redox centers in the enzyme . Data are also summarized showing that the H+/e- stoichiometry for proton pumping in the cytochrome span of the mitochondrial respiratory chain is flexible. The DeltapH component of the bulk-phase membrane electrochemical proton gradient exerts a decoupling effect on the proton pump of both the bc1 complex and cytochrome c oxidase. A slip in the pumping efficiency of the latter is also caused by high electron pressure. The mechanistic and physiological implications of proton-pump slips are examined. The easiness with which bulk phase DeltapH causes, at least above a threshold level, decoupling of proton pumping indicates that for active oxidative phosphorylation efficient protonic coupling between redox complexes and ATP synthase takes place at the membrane surface, likely in cristae, without significant formation of delocalized DeltamuH+. A role of slips in modulating oxygen free radical production by the respiratory chain and the mitochondrial pathway of apoptosis is discussed.  相似文献   

19.
Reddi AR  Reedy CJ  Mui S  Gibney BR 《Biochemistry》2007,46(1):291-305
To study the engineering requirements for proton pumping in energy-converting enzymes such as cytochrome c oxidase, the thermodynamics and mechanisms of proton-coupled electron transfer in two designed heme proteins are elucidated. Both heme protein maquettes chosen, heme b-[H10A24]2 and heme b-[delta7-His]2, are four-alpha-helix bundles that display pH-dependent heme midpoint potential modulations, or redox-Bohr effects. Detailed equilibrium binding studies of ferric and ferrous heme b with these maquettes allow the individual contributions of heme-protein association, iron-histidine ligation, and heme-protein electrostatics to be elucidated. These data demonstrate that the larger, less well-structured [H10A24]2 binds heme b in both oxidation states tighter than the smaller and more well-structured [Delta7-His]2 due to a stronger porphyrin-protein hydrophobic interaction. The 66 mV (1.5 kcal/mol) difference in their heme reduction potentials observed at pH 8.0 is due mostly to stabilization of ferrous heme in [H10A24]2 relative to [delta7-His]2. The data indicate that porphyrin-protein hydrophobic interactions and heme iron coordination are responsible for the Kd value of 37 nM for the heme b-[delta7-His]2 scaffold, while the affinity of heme b for [H10A24]2 is 20-fold tighter due to a combination of porphyrin-protein hydrophobic interactions, iron coordination, and electrostatic effects. The data also illustrate that the contribution of bis-His coordination to ferrous heme protein affinity is limited, <3.0 kcal/mol. The 1H+/1e- redox-Bohr effect of heme b-[H10A24]2 is due to the greater absolute stabilization of the ferric heme (4.1 kcal/mol) compared to the ferrous heme (1.4 kcal/mol) binding upon glutamic acid deprotonation, i.e., an electrostatic response mechanism. The 2H+/1e- redox-Bohr effect observed for heme b-[delta7-His]2 is due to histidine protonation and histidine dissociation of ferrous heme b upon reduction, i.e., a ligand loss mechanism. These results indicate that the contribution of porphyrin-protein hydrophobic interactions to heme affinity is critical to maintaining the heme bound in both oxidation states and eliciting an electrostatic response from these designed heme protein scaffolds.  相似文献   

20.
The N139D mutant of cytochrome c oxidase from Rhodobacter sphaeroides retains full steady state oxidase activity but completely lacks proton translocation coupled to turnover in reconstituted liposomes (Pawate, A. S., Morgan, J., Namslauer, A., Mills, D., Brzezinski, P., Ferguson-Miller, S., and Gennis, R. B. (2002) Biochemistry 41, 13417-13423). Here, time-resolved electron transfer and vectorial charge translocation in the ferryl-oxo --> oxidized transition (transfer of the 4th electron in the catalytic cycle) have been studied with the N139D mutant using ruthenium(II)-tris-bipyridyl complex as a photoactive single-electron donor. With the wild type oxidase, the flash-induced generation of Deltaphi in the ferryl-oxo --> oxidized transition begins with rapid vectorial electron transfer from CuA to heme a (tau approximately 15 micros), followed by two protonic phases, referred to as the intermediate (0.4 ms) and slow electrogenic phases (1.5 ms). In the N139D mutant, only a single protonic phase (tau approximately 0.6 ms) is observed, which was associated with electron transfer from heme a to the heme a3/CuB site and decelerates approximately 4-fold in D2O. With the wild type oxidase, such a high H2O/D2O solvent isotope effect is characteristic of only the slow (1.5 ms) phase. Presumably, the 0.6-ms electrogenic phase in the N139D mutant reports proton transfer from the inner aqueous phase to Glu-286, replacing the "chemical" proton transferred from Glu-286 to the heme a3/CuB site. The transfer occurs through the D-channel, because it is observed also in the N139D/K362M double mutant in which the K-channel is blocked. It is concluded that the intermediate electrogenic phase observed in the wild type enzyme is missing in the N139D mutant and is because of translocation of the "pumped" proton from Glu-286 to the D-ring propionate of heme a3 or to release of this proton to the outer aqueous phase. Significantly, with the wild type oxidase, the protonic electrogenic phase associated with proton pumping (approximately 0.4 ms) precedes the electrogenic phase associated with the oxygen chemistry (approximately 1.5 ms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号