首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Referee: Dr. Ruth Nussinov, Saic Frederick, Bldg. 469. 469, Room 151, Frederick, MD 21702-1201

Hyperthermophilic organisms optimally grow close to the boiling point of water. As a consequence, their macromolecules must be much more thermostable than those from mesophilic species. Here, proteins from hyperthermophiles and mesophiles are compared with respect to their thermodynamic and kinetic stabilities. The known differences in amino acid sequences and three-dimensional structures between intrinsically thermostable and thermolabile proteins will be summarized, and the crucial role of electrostatic interactions for protein stability at high temperatures will be highlighted. Successful attempts to increase the thermostability of proteins, which were either based on rational design or on directed evolution, are presented. The relationship between high thermo-stability of enzymes from hyperthermophiles and their low catalytic activity at room temperature is discussed. Not all proteins from hyperthermophiles are thermostable enough to retain their structures and functions at the high physiological temperatures. It will be shown how this shortcoming can be surpassed by extrinsic factors such as large molecular chaperones and small compatible solutes. Finally, the potential of thermostable enzymes for biotechnology is discussed.  相似文献   

2.
Life grows almost everywhere on earth, including in extreme environments and under harsh conditions. Organisms adapted to high temperatures are called thermophiles (growth temperature 45-75 degrees C) and hyperthermophiles (growth temperature >or= 80 degrees C). Proteins from such organisms usually show extreme thermal stability, despite having folded structures very similar to their mesostable counterparts. Here, we summarize the current data on thermodynamic and kinetic folding/unfolding behaviors of proteins from hyperthermophilic microorganisms. In contrast to thermostable proteins, rather few (i.e. less than 20) hyperthermostable proteins have been thoroughly characterized in terms of their in vitro folding processes and their thermodynamic stability profiles. Examples that will be discussed include co-chaperonin proteins, iron-sulfur-cluster proteins, and DNA-binding proteins from hyperthermophilic bacteria (i.e. Aquifex and Theromotoga) and archea (e.g. Pyrococcus, Thermococcus, Methanothermus and Sulfolobus). Despite the small set of studied systems, it is clear that super-slow protein unfolding is a dominant strategy to allow these proteins to function at extreme temperatures.  相似文献   

3.
Structural features of thermozymes   总被引:15,自引:0,他引:15  
Enzymes synthesized by thermophiles and hyperthermophiles are known as thermozymes. These enzymes are typically thermostable, or resistant to irreversible inactivation at high temperatures, and thermophilic, i.e. optimally active at elevated temperatures between 60 and 125 degrees C. Enzyme thermostability encompasses thermodynamic stability and kinetic stability. Thermodynamic stability is defined by the enzyme's free energy of stabilization (deltaG(stab)) and by its melting temperature (Tm). An enzyme's kinetic stability is often expressed as its halflife (t1/2) at defined temperature. DeltaG(stab) of thermophilic proteins is 5-20 kcal/mol higher than that of mesophilic proteins. The thermostability mechanisms for thermozymes are varied and depend on the enzyme; nevertheless, some common features can be identified as contributing to stability. These features include more interactions (i.e. hydrogen bonds, electrostatic interactions, hydrophobic interactions, disulfide bonds, metal binding) than in less stable enzymes and superior conformational structure (i.e. more rigid, higher packing efficiency, reduced entropy of unfolding, conformational strain release and stability of alpha-helix). Understanding of the stabilizing features will greatly facilitate reengineering of some of the mesozymes to more stable thermozymes.  相似文献   

4.
Recent progress towards the application of hyperthermophiles and their enzymes   总被引:11,自引:0,他引:11  
The discovery of extremophiles has drastically changed our understanding towards the diversity of life itself and the conditions under which it can be sustained. Extremophiles have evolved to withstand and multiply under the extremes of temperature, pressure, pH and salinity. Hyperthermophiles are the group that have adapted to high temperature; many have been found to grow at temperatures above the boiling point of water. This review focuses on recent advances in application-based research on hyperthermophiles and their thermostable enzymes.  相似文献   

5.
Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientists both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperthermophilic proteins and their mesophilic homologs. In a recent work, we focused attention on structural adaptation occurring at the subunit interface of oligomeric hyper- and thermostable enzymes. A set of structural and chemico-physical parameters were compared to those observed at the corresponding interfaces of homologous mesophilic proteins. Among the most significant variations, a general increase of interface apolarity and packing density in hyperthermophilic enzymes were found. This work was therefore aimed at elucidating whether the increased packing observed is reached also through the reduction of interface cavity number and volume. The results indicate that number of cavities tends to be relatively constant while cavity volume tends to decrease in the hyperthermophilic interfaces. The cavity apolarity increases in thermophiles but, apparently, not in hyperthermophiles. Moreover, interface hot spot residues of the mesophilic interfaces tend to be conserved in the extremophilic counterparts.  相似文献   

6.
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.  相似文献   

7.
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of >80°C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.  相似文献   

8.
Thermo-search is an online web tool for the analysis of proteomes and individual proteins according to the ratio of two couplets of preferred and avoided amino acids in hyperthermophiles, thermophiles and mesophiles. It displays the ratio between glutamic acid plus lysine (E+K) and glutamine plus histidine (Q+H), which is higher in thermophilic proteomes and thermostable proteins than in mesophilic proteomes and thermo labile proteins. Thermo-search allows a rapid screen of the CRM database for thermostable proteins in their functional categories and a visualization of the (E+K)/(Q+H) average ratio between organisms, allowing a comparison of their lifestyles.  相似文献   

9.
The ability to engineer proteins with increased thermostability will profoundly broaden their practical applications. Recent experimental results show that optimization of charge-charge interactions on the surface of proteins can be a useful strategy in the design of thermostable enzymes. Results also indicate a possibility that such optimized interactions provide structural determinants for enhanced stability of proteins from thermophilic organisms. In this article, the general strategy for design of thermostable proteins and perspectives for future studies are discussed.  相似文献   

10.
Glutamate dehydrogenase catalyses the oxidative deamination of glutamate to 2-oxoglutarate with concomitant reduction of NAD(P)(+), and has been shown to be widely distributed in nature across species ranging from psychrophiles to hyperthermophiles. Extensive characterisation of this enzyme isolated from hyperthermophilic organisms has led to its adoption as a model system for analysing the determinants of thermal stability. The crystal structure of the extremely thermostable glutamate dehydrogenase from Thermococcus litoralis has been determined at 2.5 A resolution, and has been compared to that from the hyperthermophile Pyrococcus furiosus. The two enzymes are 87 % identical in sequence, yet differ 16-fold in their half-lives at 104 degrees C. This is the first reported comparative analysis of the structures of a multisubunit enzyme from two closely related yet distinct hyperthermophilies. The less stable T. litoralis enzyme has a decreased number of ion pair interactions; modified patterns of hydrogen bonding resulting from isosteric sequence changes; substitutions that decrease packing efficiency; and substitutions which give rise to subtle but distinct shifts in both main-chain and side-chain elements of the structure. This analysis provides a rational basis to test ideas on the factors that confer thermal stability in proteins through a combination of mutagenesis, calorimetry, and structural studies.  相似文献   

11.
Developments in industrially important thermostable enzymes: a review   总被引:41,自引:0,他引:41  
Cellular components of thermophilic organisms (enzymes, proteins and nucleic acids) are also thermostable. Apart from high temperature they are also known to withstand denaturants of extremely acidic and alkaline conditions. Thermostable enzymes are highly specific and thus have considerable potential for many industrial applications. The use of such enzymes in maximising reactions accomplished in the food and paper industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied extensively. The enzymes can be produced from the thermophiles through either optimised fermentation of the microorganisms or cloning of fast-growing mesophiles by recombinant DNA technology. In this review, the source microorganisms and properties of thermostable starch hydrolysing amylases, xylanases, cellulases, chitinases, proteases, lipases and DNA polymerases are discussed. The industrial needs for such specific thermostable enzyme and improvements required to maximize their application in the future are also suggested.  相似文献   

12.
Lipases are known for their versatility in addition to their ability to digest fat. They can be used for the formulation of detergents, as food ingredients and as biocatalysts in many industrial processes. Because conventional enzymes are frangible at high temperatures, the replacement of conventional chemical routes with biochemical processes that utilize thermostable lipases is vital in the industrial setting. Recent theoretical studies on enzymes have provided numerous fundamental insights into the structures, folding mechanisms and stabilities of these proteins. The studies corroborate the experimental results and provide additional information regarding the structures that were determined experimentally. In this paper, we review the computational studies that have described how temperature affects the structure and dynamics of thermoenzymes, including the thermoalkalophilic L1 lipase derived from Bacillus stearothermophilus. We will also discuss the potential of using pressure for the analysis of the stability of thermoenzymes because high pressure is also important for the processing and preservation of foods.  相似文献   

13.
Mead JR  Cryer A  Ramji DP 《FEBS letters》1999,454(1-2):1-6
Enzymes from hyperthermophiles can be efficiently purified after expression in mesophilic hosts and are well-suited for crystallisation attempts. Two enzymes of histidine biosynthesis from Thermotoga maritima, N'-((5'-phosphoribosyl)-formimino)-5-aminoimidazol-4-carb oxamid ribonucleotide isomerase and the cyclase moiety of imidazoleglycerol phosphate synthase, were overexpressed in Escherichia coli, both in their native and seleno-methionine-labelled forms, purified by heat precipitation of host proteins and crystallised. N'-((5'-phosphoribosyl)-formimino)-5-aminoimidazol-4-carb oxamid ribonucleotide isomerase crystallised in four different forms, all suitable for X-ray structure solution, and the cyclase moiety of imidazoleglycerol phosphate synthase yielded one crystal form that diffracted to atomic resolution. The obtained crystals will enable the determination of the first three-dimensional structures of enzymes from the histidine biosynthetic pathway.  相似文献   

14.
Relationship of protein flexibility to thermostability   总被引:11,自引:0,他引:11  
Thermostability of proteins arises from the simultaneous effect of several forces, which in fact lead to decreased flexibility of the polypeptide chain. This is verified by flexibility indices, which are derived from normalized B-values of individual amino acids in several refined three-dimensional structures. Flexibility indices show that overall flexibility is reduced when thermostability is increased. Protein molecules require both flexibility and rigidity to function, but the higher the temperature optimum and stability the more rigid is the structure needed to compensate for increased thermal fluctuations. Flexibilities of proteins performing the same catalytic activity seem to be about the same at their temperature optima, but the more rigid thermostable proteins reach the flexibility of thermolabile proteins at higher temperatures. In several proteins such as allosteric enzymes, some local sites of flexibility are highly conserved. The relevance of reduced flexibility to overall stability of proteins is also discussed. Flexibility indices and profiles can be used in the design of more stable proteins by site-directed mutagenesis.  相似文献   

15.
Enzymes from hyperthermophiles display extreme (thermo)stability and a wide range of enzymes have been examined to explore their potential for various biotechnological processes. In addition, recent years have witnessed the development of genetic systems in a number of hyperthermophilic archaea. This has provided the means to initiate cell engineering studies in these organisms. Biofuel production is now an important topic in microbial biotechnology, and the hydrogen producing capabilities of (hyper)thermophiles, as well as their thermostable hydrogenases, are now attracting much attention.  相似文献   

16.
Only in the last decade have microorganisms been discovered which grow near or above 100°C. The enzymes that are formed by these extremely thermophilic (growth temperature 65 to 85°C) and hyperthermophilic (growth temperature 85 to 110°C) microorganisms are of great interest. This review covers the extracellular and intracellular enzymes of these exotic microorganisms that have recently been described. Polymer-hydrolysing enzymes, such as amylolytic, cellulolytic, hemicellulolytic and proteolytic enzymes, will be discussed. In addition, the properties of the intracellular enzymes involved in carbohydrate and amino-acid metabolism and DNA-binding and chaperones and chaperone-like proteins from hyperthermophiles are described. Due to the unusual properties of these heat-stable enzymes, they are expected to fill the gap between biological and chemical processes.The authors are with the Technical University Hamburg-Harburg, Institute of Biotechnology, Department of Technical Microbiology, Denickestrasse 15, D-21071 Hamburg, Germany  相似文献   

17.
Hyperthermophiles and the problem of DNA instability   总被引:7,自引:0,他引:7  
Rates of chemical decomposition of DNA at the optimal growth temperatures of hyperthermophiles seem incongruent with the requirements of accurate genome replication. The peculiar physiology, ecology and phylogeny of hyperthermophiles combine to suggest that these prokaryotes have solved a molecular problem (spontaneous loss of native DNA structure) of a magnitude that well-studied microorganisms do not face. The failure of DNA base composition to correlate with optimal growth temperature among hyperthermophiles provides indirect evidence that other mechanisms maintain their chromosomal DNA in the duplex form. Studies in vitro indicate that DNA primary structure is more difficult to maintain at extremely high temperature than is secondary structure, yet hyperthermophiles exhibit only modest levels of spontaneous mutation. Radiation sensitivity studies also indicate that hyperthermophiles repair their DNA efficiently in vivo , and underlying mechanisms are beginning to be examined. Several enzymes of DNA metabolism from hyperthermophilic archaea exhibit unusual biochemical features that may ultimately prove relevant to DNA repair. However, genomic sequencing results suggest that many DNA repair genes of hyperthermophilic archaea may not be recognized because they are not sufficiently related to those of well-studied organisms.  相似文献   

18.
Matsui I  Harata K 《The FEBS journal》2007,274(16):4012-4022
Understanding the structural basis of thermostability and thermoactivity, and their interdependence, is central to the successful future exploitation of extremophilic enzymes in biotechnology. However, the structural basis of thermostability is still not fully characterized. Ionizable residues play essential roles in proteins, modulating protein stability, folding and function. The dominant roles of the buried polar contacts and ion pairs have been reviewed by distinguishing between the inside polar contacts and the total intramolecular polar contacts, and by evaluating their contribution as molecular determinants for protein stability using various protein structures from hyperthermophiles, thermophiles and mesophilic organisms. The analysis revealed that the remarkably increased number of internal polar contacts in a monomeric structure probably play a central role in enhancing the melting temperature value up to 120 degrees C for hyperthermophilic enzymes from the genus Pyrococcus. These results provide a promising contribution for improving the thermostability of enzymes by modulating buried polar contacts and ion pairs.  相似文献   

19.
Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Angstroms of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure of BSX with those of other thermostable GH10 xylanases optimally active at acidic or close to neutral pH showed that the solvent-exposed acidic amino acids, Asp and Glu, are markedly enhanced in BSX, while solvent-exposed Asn was noticeably depleted. The BSX crystal structure when compared with putative three-dimensional homology models of other extracellular alkalophilic GH10 xylanases from alkalophilic organisms suggests that a protein surface rich in acidic residues may be an important feature common to these alkali thermostable enzymes. A comparison of the surface features of BSX and of halophilic proteins allowed us to predict the activity of BSX at high salt concentrations, which we verified through experiments. This offered us important lessons in the polyextremophilicity of proteins, where understanding the structural features of a protein stable in one set of extreme conditions provided clues about the activity of the protein in other extreme conditions. The work brings to the fore the role of the nature and composition of solvent-exposed residues in the adaptation of enzymes to polyextreme conditions, as in BSX.  相似文献   

20.

Background

Most organisms grow at temperatures from 20 to 50°C but some prokaryotes, including Archaea and Bacteria, are capable of withstanding higher temperatures, from 60 to >100°C. What makes these cells so resistant to heat? Their biomolecules must be sufficiently stable, especially proteins, to work under these extreme conditions, but the bases for thermostability remains elusive.

Results

The preferential usage of certain couples of amino acids and codons in thermal adaptation was investigated, by comparative proteome analysis, using 28 complete genomes from 18 mesophiles, 4 thermophiles, and 6 hyperthermophiles. In the hyperthermophiles proteomes, whenever the percent of Glu (E) and Lys (K) Increased, the percent of Gln (Q) and His (H) decreased, so that the E+K/Q+H ratio was > 4,5; in the mesophiles proteomes, it was < 2,5 and in the thermophiles an intermediary value was observed. The E+K/Q+H ratios for chaperonins, potentially thermostable proteins, were higher than their proteome ratios whereas, for DNA ligases, not necessarily thermostable, they followed the proteome ones. Analysis of codon usage revealed that hyperthermophiles preferred AGR codons for Arg in detriment of CGN codons, which were preferred by mesophiles.

Conclusions

The results suggested that the E+K/Q+H ratio may provide a useful mark for distinguishing hyperthermophilic, thermophilic and mesophilic prokaryotes and that the high percent of the amino acid couple E+K, consistently associated to the low percent of the pair Q+H, could contribute to protein thermostability. Second, the preference for AGR codons for Arg was a signature of all hyperthermophilics so far analyzed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号