首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
CD44 is a cell surface receptor for the extracellular matrix macromolecule hyaluronan. In addition, CD44 mediates the endocytosis of hyaluronan leading to its subsequent degradation within lysosomes. Using model systems of COS-7 and Flp-293 cells, we demonstrate that the association of CD44 with lipid rafts is essential for the endocytosis of hyaluronan but not the extracellular binding. Further, we demonstrate that palmitoylation of CD44 on two highly conserved cysteine residues is essential for the association with lipid rafts as determined by density gradient ultracentrifugation. Mutations of either cysteine residues or pretreatment of cells with the palmitic acid analog 2-bromopalmitate, reduced the [3H]palmitic acid incorporation into CD44 and prevented CD44-lipid rafts association. Preventing CD44 palmitoylation had no effect on the binding of hyaluronan but inhibited hyaluronan internalization. The turnover of the CD44 receptor itself was also affected by blocking its association with lipid rafts. Using cycloheximide to prevent de novo protein synthesis, palmitoylation-deficient cysteine mutants underwent slower turnover from cell surface compared with the palmitoylation-intact wild type, as determined by immunofluorescence and Western blotting. These results indicate that palmitoylation of CD44 is a critical driving determinant to CD44 association with lipid rafts and, concomitantly, the rates of hyaluronan endocytosis and CD44 turnover from cell surface.  相似文献   

2.
In many cells hyaluronan receptor CD44 mediates the endocytosis of hyaluronan and its delivery to endosomes/lysosomes. The regulation of this process remains largely unknown. In most extracellular matrices hyaluronan is not present as a free polysaccharide but often is found in complex with other small proteins and macromolecules such as proteoglycans. This is especially true in cartilage, where hyaluronan assembles into an aggregate structure with the large proteoglycan termed aggrecan. In this study when purified aggrecan was added to FITC-conjugated hyaluronan, no internalization of hyaluronan was detected. This suggested that the overall size of the aggregate prevented hyaluronan endocytosis and furthermore that proteolysis of the aggrecan was a required prerequisite for local, cell-based turnover of hyaluronan. To test this hypothesis, limited C-terminal digestion of aggrecan was performed to determine whether a size range of aggrecan exists that permits hyaluronan endocytosis. Our data demonstrate that only limited degradation of the aggrecan monomer was required to allow for hyaluronan internalization. When hyaluronan was combined with partially degraded, dansyl chloride-labeled aggrecan, blue fluorescent aggrecan was also visualized within intracellular vesicles. It was also determined that sonicated hyaluronan of smaller molecular size was internalized more readily than high molecular mass hyaluronan. However, the addition of intact aggrecan to hyaluronan chains sonicated for 5 and 10 s reblocked their endocytosis, whereas aggregates containing 15-s sonicated hyaluronan were internalized. These data suggest that hyaluronan endocytosis is regulated in large part by the extracellular proteolytic processing of hyaluronan-bound proteoglycan.  相似文献   

3.
CD44-mediated uptake and degradation of hyaluronan.   总被引:8,自引:0,他引:8  
Hyaluronan turnover occurs systemically from the lymph and serum as well as locally by the same cells responsible for its synthesis. Local turnover involves receptor-mediated uptake and delivery to lysosomes. Of the many hyaluronan binding proteins/receptors known, the participation of CD44 in the internalization of hyaluronan has been best characterized. Some fraction of the hyaluronan bound to CD44 becomes internalized and delivered to lysosomes by a mechanism that is not dependent on clatherin, caveolae or pinocytosis. In cells such as chondrocytes, anabolic and catabolic cytokines can alter the activity of CD44 toward hyaluronan internalization. However, the mechanism of cellular regulation remains unclear. Regulation may involve the participation of alternatively spliced isoforms of CD44, changes in CD44 phosphorylation, changes in cytoskeletal binding proteins or, the activity or extracellular proteolytic activity.  相似文献   

4.
Latrunculin and cytochalasin decrease chondrocyte matrix retention.   总被引:3,自引:0,他引:3  
The proteoglycan-rich extracellular matrix (ECM) directly associated with the cells of articular cartilage is anchored to the chondrocyte plasma membrane via interaction with the hyaluronan receptor CD44. The cytoplasmic tail of CD44 interacts with the cortical cytoskeleton. The objective of this study was to determine the role of the actin cytoskeleton in CD44-mediated matrix assembly by chondrocytes and cartilage matrix retention and homeostasis. Adult bovine articular cartilage tissue slices and isolated chondrocytes were treated with latrunculin or cytochalasin. Tissues were processed for histology and chondrocytes were examined for CD44 expression and pericellular matrix assembly. Treatments that disrupt the actin cytoskeleton reduced chondrocyte pericellular matrix assembly and the retention of proteoglycan within cartilage explants. There was enhanced detection of a neoepitope resulting from proteolysis of aggrecan. Cytoskeletal disruption did not reduce CD44 expression, as monitored by flow cytometry, but detergent extraction of CD44 was enhanced and hyaluronan binding was decreased. Thus, disruption of the cytoskeleton reduces the anchorage of CD44 in the chondrocyte membrane and the capacity of CD44 to bind its ligand. The results suggest that cytoskeletal disruption within cartilage uncouples chondrocytes from the matrix, resulting in altered metabolism and deleterious changes in matrix structure.  相似文献   

5.
The chondrocyte pericellular matrix is an essential zone for cartilage matrix assembly and turnover. Electron micrographs of native endogenous and composition-defined exogenous pericellular matrices, both preserved via ruthenium hexaminetrichloride fixation procedures, depict strikingly similar networks of hyaluronan and proteoglycan extending out from the cell surface. Biochemical and morphological analyses of matrix regrowth show that monoclonal antibodies directed against the hyaluronan receptor CD44 blocked chondrocyte pericellular matrix assembly. Immunoperoxidase electron microscopy was used to display regular repeating spacing patterns of hyaluronan/proteoglycan assembly at the cell surface. These patterns compared well with the ultrastructural immunolocalization of CD44 at the cell surface. All of these data suggest that the hyaluronan receptor CD44 retains and participates in the assembly of the chondrocyte pericellular matrix.  相似文献   

6.
Chondrocyte CD44 receptors anchor hyaluronan to the cell surface, enabling the assembly and retention of proteoglycan aggregates in the pericellular matrix. Hyaluronan-CD44 interactions also provide signaling important for maintaining cartilage homeostasis. Disruption of chondrocyte-hyaluronan contact alters CD44 occupancy, initiating alternative signaling cascades. Treatment with hyaluronan oligosaccharides is one approach to uncouple CD44 receptors from its native ligand, hyaluronan. In bovine articular chondrocytes, treatment with hyaluronan oligosaccharides or purified hyaluronan hexasaccharides induced the production of nitric oxide that mirrored nitric oxide production following interleukin-1 treatment. In contrast, 120 and 1,260 kDa hyaluronan did not induce production of nitric oxide. Human chondrocytes responded similarly to treatment with hyaluronan or hyaluronan oligosaccharides. Nitric oxide production from chondrocytes was mediated by activation of the inducible nitric oxide synthase, as confirmed by mRNA expression and inhibition of nitric oxide production by diphenyleneiodonium. Co-treatment of chondrocytes with hyaluronan oligosaccharides and interleukin-1 did not demonstrate additive effects. Blocking interleukin-1 receptors with an antagonist did not abolish the production of nitric oxide induced by treatment with hyaluronan oligosaccharides. Moreover, only COS-7 following transfection with a pCD44, not the CD44-null parental cells, responded to treatment with hyaluronan oligosaccharides by releasing nitric oxide. This study demonstrates a novel signaling potential by hyaluronan fragments, in lieu of endogenous hyaluronan-chondrocyte interactions, resulting in the activation of inducible nitric oxide synthase.  相似文献   

7.
CD44 is a multifunctional adhesion molecule that binds to hyaluronan (HA), type I collagen, and fibronectin. We investigated localization of CD44 and HA in mandibular condylar cartilage compared with the growth plate and the articular cartilage, to clarify the characteristics of chondrocytes. We also performed Western blotting using a lysate of mandibular condyle. In mandibular condyle, CD44-positive cells were seen in the surface region of the fibrous cell layer and in the proliferative cell layer. Western blotting revealed that the molecular weight of CD44 in condyle was 78 to 86 kD. Intense reactivity for HA was detected on the surface of the condyle and the lacunae of the hypertrophic cell layer. Moderate labeling was seen in cartilage matrix of the proliferative and maturative layer. Weak labeling was also seen in the fibrous cell layer. In growth plate and articular cartilage, HA was detected in all cell layers. However, chondrocytes of these cartilages did not exhibit reactivity for CD44. These results suggest that chondrocytes in the mandibular condylar cartilage differ in expression of CD44 from those in tibial growth plate and articular cartilage. Cell-matrix interaction between CD44 and HA may play an important role in the proliferation of chondrocytes in the mandibular condyle.  相似文献   

8.
Hyaluronan, a high-molecular-weight glycosaminoglycan of cartilage, is deposited directly into the extracellular space by hyaluronan synthases, while hyaluronan catabolism is mediated by the hyaluronidases. An in vitro cell culture system has been established in which human dermal fibroblasts are induced to undergo chondrogenesis. Here, we describe the differential modulation of the hyaluronidases and the up-regulation of the hyaluronan receptor, CD44, during such chondrogenesis. Dermal fibroblasts, plated in micromass cultures in the presence of lactic acid and staurosporine for 24 h, were then placed in serum-free, chemically defined medium. At 3 days, RNA was extracted and RT-PCR performed using primers for the hyaluronidase genes. Marked increase in HYAL1 expression was observed, with only moderate increases occurring in HYAL2 and HYAL3. No expression of HYAL4 and PH-20, the sperm-associated hyaluronidase, was detected. RNA levels correlated well with changes in hyaluronidase enzyme activity. Finally, greater expression and staining for the hyaluronan receptor, CD44s, the standard form, were detected. Differential expression of the somatic hyaluronidases and CD44-mediated hyaluronan turnover play a critical role in cartilage development from mesenchymal precursors.  相似文献   

9.
CD44 shedding occurs in osteoarthritic chondrocytes. Previous work of others has suggested that the hyaluronidase isoform HYAL2 has the capacity to bind to CD44, a binding that may itself induce CD44 cleavage. Experiments were developed to elucidate whether chondrocyte HYAL2: (1) was exposed on the extracellular plasma membrane of chondrocytes, (2) bound to CD44, (3) underwent shedding together with CD44 and lastly, (4) exhibited hyaluronidase activity within a near-neutral pH range. Enhancing CD44 shedding by IL-1β resulted in a proportional increase in HYAL2 released from human and bovine chondrocytes into the medium. CD44 knockdown by siRNA also resulted in increased accumulation of HYAL2 in the media of chondrocytes. By hyaluronan zymography only activity at pH 3.7 was observed and this activity was reduced by pre-treatment of chondrocytes with trypsin. CD44 and HYAL2 were found to co-immunoprecipitate, and to co-localize within intracellular vesicles and at the plasma membrane. Degradation of hyaluronan was visualized by agarose gel electrophoresis. With this approach, hyaluronidase activity could be observed at pH 4.8 under assay conditions in which CD44 and HYAL2 binding remained intact; additionally, weak hyaluronidase activity could be observed at pH 6.8 under these conditions. This study suggests that CD44 and HYAL2 are bound at the surface of chondrocytes. The release of HYAL2 when CD44 is shed could provide a mechanism for weak hyaluronidase activity to occur within the more distant extracellular matrix of cartilage.  相似文献   

10.
Hyaluronan-cell interactions are initiated co-ordinately with mesenchymal condensation during chondrogenic differentiation in the limb bud. Hyaluronan is responsible for the retention and organization of proteoglycan within the cartilage matrix. Hyaluronan-CD44 binding also retains proteoglycan aggregates to the chondrocyte plasma membrane. A sequence for CD44 protein in chick has recently been reported, but never evaluated in chick chondrocytes. Total RNA was isolated from embryonic chick limb buds, stages 18, 19, 24, 25 and 30. Using semi-quantitative RT-PCR, expression of aggrecan, this chick CD44 orthologue and GAPDH mRNA was analyzed. Aggrecan expression was detected at all stages, but was increased at stage 30. CD44 mRNA was detected at extremely low levels at stage 18 to higher levels in the latter stages. Thus, the temporal expression of CD44 mRNA correlated with the onset of pre-cartilage condensation. The full-length chick chondrocyte CD44 cDNA was obtained following RT-PCR using RNA derived from tibial chondrocytes from stage 37 chick embryos. The nucleotide sequence was used to generate an amino acid sequence and analyses revealed homologies of 44.4% with mouse, 47.8% with bovine and 46.3% with human CD44. Tibial chondrocytes were cultured in the presence or absence of retinoic acid for 36 or 72 h. By RT-PCR, expression of aggrecan and the CD44 mRNA by chick chondrocytes was decreased after retinoic acid treatment, while GAPDH expression showed no change. As expected, control chondrocytes exhibited a round morphology while retinoic acid-treated chondrocytes were elongated. The retinoic acid-treated chondrocytes also exhibited reduced hyaluronan binding. This functional assay indicates a role for a CD44 receptor in matrix retention by chick chondrocytes.  相似文献   

11.
When Saccharomyces cerevisiae a cells bind alpha-factor pheromone, the ligand is internalized and its binding sites are lost from the cell surface in a time-, energy-, and temperature-dependent manner. This report presents direct evidence for alpha-factor-induced internalization of cell surface receptors. First, membrane fractionation on Renografin density gradients indicated that the alpha-factor receptors were predominantly found in the plasma membrane peak before alpha-factor treatment and then appeared in membranes of lesser buoyant density after alpha-factor exposure. Second, receptors were susceptible to cleavage by extracellular proteases before alpha-factor treatment and then became resistant to proteolysis after exposure to pheromone, consistent with the transit of receptors from the cell surface to an internal compartment. The median transit time in both assays was approximately 8 min. The ultimate target of the internalized receptors was identified as the vacuole, since the membranes containing internalized receptors cofractionated with vacuolar membranes, since the turnover of receptors was stimulated by alpha-factor exposure, and since receptor degradation was blocked in a pep4 mutant that is deficient for vacuolar proteases. The carboxy-terminal domain of the receptor that is required for ligand internalization was also found to be essential for endocytosis of the receptor. A receptor mutant, ste2-L236H, which is defective for pheromone response but capable of ligand internalization, was found to be proficient for receptor endocytosis. Hence, separate structural features of the receptor appear to specify its signal transduction and internalization activities.  相似文献   

12.
Hyaluronan binding by cell surface CD44   总被引:16,自引:0,他引:16  
CD44 is the primary cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan. Here we determined the relative avidities of unlabeled hyaluronan preparations for cell surface CD44 by their ability to block the binding of fluorescein-conjugated hyaluronan to a variety of cells. We show that hyaluronan binding at the cell surface is a complex interplay of multivalent binding events affected by the size of the multivalent hyaluronan ligand, the quantity and density of cell surface CD44, and the activation state of CD44 as determined by cell-specific factors and/or treatment with CD44-specific monoclonal antibody (mAb). Using low M(r) hyaluronan oligomers of defined sizes, we observed monovalent binding between 6 and 18 sugars. At approximately 20 to approximately 38 sugars, there was an increase in avidity (approximately 3x), suggesting that divalent binding was occurring. In the presence of the inducing mAb IRAWB14, monovalent binding avidity was similar to that of noninduced CD44, but beginning at approximately 20 residues, there was a dramatic and progressive increase in avidity with increasing oligomer size ( approximately 22 < 26 < 30 < 34 < 38 sugars). Kinetic studies of binding and dissociation of fluorescein-conjugated hyaluronan indicated that inducing mAb treatment had little effect on the binding kinetics, but dissociation from the cell surface was greatly delayed by inducing mAb.  相似文献   

13.
It was previously demonstrated that freshly isolated rat hepatocytes can internalize severalfold more epidermal growth factor (EGF) molecules than the number of surface EGF receptors, suggesting extensive reutilization of receptors during endocytosis (Gladhaug, I. P. & Christoffersen, T. (1987) Eur. J. Biochem. 164, 267-275). The present report attempts to explore the pathways involved in the externalization of EGF receptors. Incubation of hepatocytes at 37 degrees C in the absence of ligand increased the surface receptor pool by 50-100% within 45 min. Pretreatment with monensin inhibited the turnover of the surface EGF receptor pool by 50-60% within 10 min and blocked the temperature-dependent externalization of receptors. Cycloheximide caused a slower attenuation of the surface receptor pool, whereas tunicamycin and chloroquine did not significantly affect the exchange of receptor pools. Monensin reduced the surface receptor pool and the endocytic uptake in corresponding proportions, without affecting the internalization of prebound EGF. Endocytic uptake was unaffected by chloroquine and slightly reduced by cycloheximide. The internalization of unoccupied receptors and the endocytosis of prebound EGF followed similar kinetics (t1/2 approximately 5 min), suggesting that unoccupied receptors are internalized at a rate comparable to that of occupied receptors. The results suggest that there is a rapid turnover of the surface pool of EGF receptors with constitutive internalization of unoccupied surface receptors and externalization of internal receptors. This is consistent with, but does not prove, a true recycling of the EGF receptors in the hepatocytes. The monensin-sensitive externalization pathway determines the capacity for continued endocytosis of EGF.  相似文献   

14.
In this study, the effects of fragmentation of the glycosoaminoglycans of the cell-associated matrix by hyaluronidase (HAase) on the expression of CD44 receptor and matrix metalloproteinase (MMP) mRNAs in cultured articular chondrocytes were examined. Chondrocytes, isolated from rabbit and bovine articular cartilage, were treated with bovine testicular HAase (0-200 units/ml) in the presence or absence of an antibody for CD44. The mRNA levels of CD44, CD44 variant (CD44v), MMPs (MMP-1, -3 and -9), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined by RT-PCR. The treatment of cultured chondrocytes with HAase resulted in the production of low molecular weight fragments of hyaluronan (HA). The expression of CD44, CD44v and MMP (MMP-1, -3 and -9) mRNAs, but not TIMP-1 or TIMP-2 mRNA, was up-regulated in the cultures treated with HAase, whereas this expression was not affected by treatment with purified HA of 1.0 x 10(5) Da. Furthermore, the induction of CD44 and MMPs on treatment with HAase was suppressed by an anti-CD44 antibody. The results suggest that the fragmentation of HA may lead to cartilage destruction in terms of the enhanced expression of MMPs as well as the upregulation of CD44.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) is a key cytokine involved in the pathogenesis of fibrosis in many organs. We previously demonstrated in renal proximal tubular cells that the engagement of the extracellular polysaccharide hyaluronan with its receptor CD44 attenuated TGF-beta1 signaling. In the current study we examined the potential mechanism by which the interaction between hyaluronan (HA) and CD44 regulates TGF-beta receptor function. Affinity labeling of TGF-beta receptors demonstrated that in the unstimulated cells the majority of the receptor partitioned into EEA-1-associated non-lipid raft-associated membrane pools. In the presence of exogenous HA, the majority of the receptors partitioned into caveolin-1 lipid raft-associated pools. TGF-beta1 increased the association of activated/phosphorylated Smad proteins with EEA-1, consistent with activation of TGF-beta1 signaling following endosomal internalization. Following addition of HA, caveolin-1 associated with the inhibitory Smad protein Smad7, consistent with the raft pools mediating receptor turnover, which was facilitated by HA. Antagonism of TGF-beta1-dependent Smad signaling and the effect of HA on TGF-beta receptor associations were inhibited by depletion of membrane cholesterol using nystatin and augmented by inhibition of endocytosis. The effect of HA on TGF-beta receptor trafficking was inhibited by inhibition of HA-CD44 interactions, using blocking antibody to CD44 or inhibition of MAP kinase activation. In conclusion, we have proposed a model by which HA engagement of CD44 leads to MAP kinase-dependent increased trafficking of TGF-beta receptors to lipid raft-associated pools, which facilitates increased receptor turnover and attenuation of TGF-beta1-dependent alteration in proximal tubular cell function.  相似文献   

16.
The low-density lipoprotein receptor-related protein 1 (LRP-1) is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. In the field of cancer, LRP-1-mediated endocytosis was first associated with antitumor properties. However, recent results suggested that LRP-1 may coordinate the adhesion-deadhesion balance in malignant cells to support tumor progression. Here, we observed that LRP-1 silencing or RAP (receptor-associated protein) treatment led to accumulation of CD44 at the tumor cell surface. Moreover, we evidenced a tight interaction between CD44 and LRP-1, not exclusively localized in lipid rafts. Overexpression of LRP-1-derived minireceptors indicated that the fourth ligand-binding cluster of LRP-1 is required to bind CD44. Labeling of CD44 with EEA1 and LAMP-1 showed that internalized CD44 is routed through early endosomes toward lysosomes in a LRP-1-dependent pathway. LRP-1-mediated internalization of CD44 was highly reduced under hyperosmotic conditions but poorly affected by membrane cholesterol depletion, revealing that it proceeds mostly via clathrin-coated pits. Finally, we demonstrated that CD44 silencing abolishes RAP-induced tumor cell attachment, revealing that cell surface accumulation of CD44 under LRP-1 blockade is mainly responsible for the stimulation of tumor cell adhesion. Altogether, our data shed light on the LRP-1-mediated internalization of CD44 that appeared critical to define the adhesive properties of tumor cells.  相似文献   

17.
Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell- associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of the cartilage pericellular matrix proteoglycan aggregates important for matrix organization. Assembly of newly synthesized chondrocyte pericellular matrices was inhibited by the addition to hyaluronan hexasaccharides, competitive inhibitors of the binding of hyaluronan to its cell surface receptor. Fully assembled chondrocyte pericellular matrices were displaced using hyaluronan hexasaccharides as well. When exogenous hyaluronan was added to matrix-free chondrocytes in combination with aggrecan, a pericellular matrix equivalent in size to an endogenous matrix formed within 30 min of incubation. Addition of hyaluronan and aggrecan to glutaraldehyde-fixed chondrocytes resulted in matrix assembly comparable to live chondrocytes. These matrices could be inhibited from assembling by the addition of excess hyaluronan hexasaccharides or displaced once assembled by subsequent incubation with hyaluronan hexasaccharides. The results indicate that the aggrecanrich chondrocyte pericellular matrix is not only on a scaffolding of hyaluronan, but actually anchored to the cell surface via the interaction between hyaluronan and hyaluronan receptors.  相似文献   

18.
Hyaluronan exerts a variety of biological effects on cells including changes in cell migration, proliferation, and matrix metabolism. However, the signaling pathways associated with the action of hyaluronan on cells have not been clearly defined. In some cells, signaling is induced by the loss of cell-hyaluronan interactions. The goal of this study was to use hyaluronan oligosaccharides as a molecular tool to explore the effects of changes in cell-hyaluronan interactions and determine the underlying molecular events that become activated. In this study, hyaluronan oligosaccharides induced the loss of extracellular matrix proteoglycan and collagen from cultured slices of normal adult human articular cartilage. This loss was coincident with an increased expression of matrix metalloproteinase (MMP)-13. MMP-13 expression was also induced in articular chondrocytes by hyaluronan (HA) hexasaccharides but not by HA tetrasaccharides nor high molecular weight hyaluronan. MMP-13 promoter-reporter constructs in CD44-null COS-7 cells revealed that both CD44-dependent and CD44-independent events mediate the induction of MMP-13 by hyaluronan oligosaccharides. Electromobility gel shift assays demonstrated the activation of chondrocyte NFkappaB by hyaluronan oligosaccharides. NFkappaB activation was also documented in C-28/I2 immortalized human chondrocytes by luciferase promoter assays and phosphorylation of IKK-alpha/beta. The link between activation of NFkappaB and MMP-13 induction by HA oligosaccharides was further confirmed through the use of the NFkappaB inhibitor helenalin. Inhibition of MAP kinases also demonstrated the involvement of p38 MAP kinase in the hyaluronan oligosaccharide induction of MMP-13. Our findings suggest that hyaluronan-CD44 interactions affect matrix metabolism via activation of NFkappaB and p38 MAP kinase.  相似文献   

19.
The internalization of CD4, a T cell differentiation antigen and the receptor for the human immunodeficiency viruses (HIV-1 and -2), has been examined in HeLa and murine 3T3 cells transfected with CD4 cDNA. Fab' fragments of the anti-CD4 monoclonal antibody Leu3a were generated by pepsin digestion and used as a specific monovalent, non-crosslinking ligand for CD4. These Fab' fragments were shown to bind to CD4 on the transfected cells with an affinity similar to that of HIV gp120, and inhibited HIV infection of lymphocytic cells. The Fab' fragments were radioiodinated and used in an acid-stripping endocytosis assay to demonstrate that the CD4 expressed on transfected HeLa and NIH3T3 cells was internalized. Approximately 1.5-2% of the total cell-bound [125I]Fab' fragments were internalized per minute. Furthermore, the internalized [125I]Fab' fragments could be shown to recycle to the cell surface. After 30-60 min a steady state was reached between internalization and recycling, with approximately 30-40% of the total cellular CD4 pool residing inside the cell. Similar results were obtained in studies with the intact divalent radiolabelled Leu3a antibody. These data demonstrate that CD4 expressed on transfected non-lymphoid cells is constitutively endocytosed and recycled.  相似文献   

20.
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号