首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure and the synaptic relationships of the orexin-A-like immunoreactive fibers in the dorsal raphe nucleus were examined with an immunoelectron microscopic method. At the electron microscopic level, most of the immunoreactive fibers, a varicosity appearance at the light microscopic level, were found as axon terminals. The large dense-cored vesicles contained in the immunoreactive axon terminals were the most intensely immunostained organellae. These axon terminals were often found to make synapses. While the axo-dendritic synapses were usually asymmetric in appearance, the axo-somatic synapses were symmetric. Orexin-A-like immunoreactive processes with no synaptic vesicles were also found. These processes often received asymmetric synapses. With less frequency, the synapses were found between the orexin-like immunoreactive processes. The results suggest that the orexin peptides are stored in the large dense-cored vesicles; the orexin-containing fibers may have influences on the physiological activities of the dorsal raphe nucleus through direct synaptic relationships.  相似文献   

2.
The ultrastructure and synaptic relations of neurotensinergic neurons in the rat dorsal raphe nucleus (DRN) were examined. The neurotensin-like immunoreactive (NT-LI) neurons in the DRN were fusiform or spherical. The NT-LI perikarya could only be detected in colchicine-treated animals whereas the immunoreactive axon terminals could only be found in the anirnals not treated with colchicine. Although many NT-LI dendrites received synapses from nonimmunoreactive axon terminals, the NT-LI perikarya received few synapses. NT-LI axon terminals also made synapses on nonimmunoreactive dendrites. Occasionally, synapses were found between the NT-LI axon terminals and NT-LI dendrites in the cases in which the animals were not treated with colchicine.  相似文献   

3.
Characterization of orexin A immunoreactivity in the rat area postrema   总被引:1,自引:0,他引:1  
The distribution of orexin A immunoreactivity and the synaptic relationships of orexin A-positive neurons in the rat area postrema were studied using both light and electron microscopy techniques. At the light microscope level, numerous orexin A-like immunoreactive fibers were found within the area postrema. Using electron microscopy, immunoreactivity within fibers was confined primarily to the axon terminals, most of which contained dense-cored vesicles. Both axo-somatic and axo-dendritic synapses made by orexin A-like immunoreactive axon terminals were found, with these synapses being both symmetric and asymmetric in form. Orexin A-like immunoreactive axon terminals could be found presynaptic to two different immunonegative profiles including the perikarya and dendrites. Occasionally, some orexin A-like immunoreactive profiles, most likely to be dendrites, could be seen receiving synaptic inputs from immunonegative or immunopositive axon terminals. The present results suggest that the physiological function of orexin A in the area postrema depends on synaptic relationships with other immunopositive and immunonegative neurons, with the action of orexin A mediated via a self-modulation feedback mechanism.  相似文献   

4.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

5.
Summary The anterograde tracer Phaseolus vulgaris-leucoagglutinin was injected into the medial nucleus of the solitary tract and into the rostral dorsomedial medulla. A sequential two-color immunoperoxidase staining was accomplished in order to demonstrate the co-distribution of presumed terminal axons with chemically distinct neurons in the dorsal raphe nucleus of the midbrain central gray, i.e., B7 serotonergic and A10dc dopaminergic neurons. Black-stained efferent fibers from the medial nucleus of the solitary tract and the rostral dorsomedial medulla intermingled with brown-stained serotonergic (5-hydroxytryptamine-immunoreactive) or dopaminergic (tyrosine hydroxylase-immunoreactive) neurons. Light microscopy revealed that the black-stained efferent axons exhibited numerous en passant and terminal varicosities that were often found in close apposition to brown-stained serotonergic and dopaminergic somata, and to proximal and distal dendrites and dendritic processes. The close association of immunoreactive elements suggests the presence of axo-somatic and axodendritic synaptic contacts of medullary fibers with serotonergic and dopaminergic neurons in the dorsal raphe nucleus. These projections could be involved in the modulation of dorsal raphe neurons, depending on the autonomic status of an animal.  相似文献   

6.
用追踪和免疫电镜技术研究三叉神经尾侧亚核(Vc)内P物质受体(SPR)阳性神经元与初级传入和下行投射之间的突触联系。光镜观察发现,在Vc浅层,SPR阳性神经元的分布与RMg下行投射终末的分布有重叠。电镜观察发现,三叉初级传入终末和SPR阳性神经元树突形成非对称性轴树突触;RMg下行投射终末与SPR阳性神经元树突也形成非对称性轴树突触,提示RMg下行投射纤维可能通过直接作用于丘脑投射神经元对三叉初级传入的伤害性信息进行调控。  相似文献   

7.
Synaptic relationships between ghrelin-like immunoreactive axon terminals and other neurons in the hypothalamic arcuate nucleus (ARC) were studied using immunostaining methods at the light and electron microscope levels. Many ghrelin-like immunoreactive axon terminals were found to be in apposition to ghrelin-like immunoreactive neurons at the light microscopic level. At the electron microscopic level, ghrelin-like immunoreactive axon terminals were found to make synapses on ghrelin-like immunoreactive cell bodies and dendrites in the ARC. While the axo-dendritic synapses between ghrelin- and ghrelin-like immunoreactive neurons were mostly the asymmetric type, the axo-somatic synapses were both asymmetric and symmetric type of synapses. Ghrelin at 10(-10) M increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the neurons isolated from the ARC, some of which were immunocytochemically identified as ghrelin-positive. Ghrelin at 10(-10) M also increased [Ca(2+)](i) in 12% of ghrelin-like immunoreactive neurons in the ARC. These findings suggest that ghrelin serves as a transmitter and/or modulator that stimulates [Ca(2+)](i) signaling in ghrelin neurons of the ARC, which may participate in the orexigenic action of ghrelin. Our data suggests a possibility of existing a novel circuit implicating regulation of feeding and/or energy metabolism.  相似文献   

8.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

9.
Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes. Most of the synapses were symmetrical in shape. A small number of synapses made by ghrelin-like immunoreactive axon terminals on POMC-like immunoreactive neurons were also identified. Both the POMC- and ghrelin-like immunoreactive neurons were found to contain large dense granular vesicles. These data suggest that the POMC-producing neurons are modulated via synaptic communication with ghrelin-containing neurons. Moreover, ghrelin-containing neurons may also have a feedback effect on POMC-containing neurons through direct synaptic contacts.  相似文献   

10.
Galanin-like peptide (GALP) is a novel peptide which is isolated from the porcine hypothalamus. GALP-containing neurons are present in the arcuate nucleus (ARC), being particularly densely concentrated in medial posterior regions. To observe the ultrastructure and synaptic relationships of GALP-containing neurons in the ARC, light and immunoelectron microscopy techniques were used. At the light microscope level, GALP-containing neurons were observed distributed rostrocaudally throughout the ARC, with the majority present in the posterior, periventricular zones. At the electron microscope level, many immunopositive dense-cored vesicles were evident in the perikarya, dendrites and axon terminals of the GALP-containing neurons. Furthermore, these neurons received synapses from immunonegative axon terminals that were symmetric in the case of synapses made on perikarya, and both asymmetric and symmetric for synapses made on dendrites. Axon terminals of GALP-containing neurons often made synapses on immunonegative dendrites. Such synapses were all symmetric. Synapses were also found between axon terminals and perikarya as well as dendrites of GALP-containing neurons. These findings suggest that the physiological role of the GALP-containing neurons in the ARC is based on complex synaptic relationships between GALP-containing neurons and either GALP-immunopositive or -immunonegative neurons.  相似文献   

11.
Qi J  Zhang H  Guo J  Yang L  Wang W  Chen T  Li H  Wu SX  Li YQ 《PloS one》2011,6(8):e23275
The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and γ-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-β-hydroxylase (DBH, a specific marker for norepinephrinergic neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1 receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem.  相似文献   

12.
The neuropeptide galanin and its three receptor subtypes (Gal R1-3) are highly expressed in the dorsal raphe nucleus (DRN), a region of the brain that contains a large population of serotonergic neurons. Galanin is co-expressed with serotonin in approximately 40% of the DRN neurons, and galanin and GALR2 expression are elevated by antidepressants like the SSRI fluoxetine, suggesting an interaction between serotonin and galanin. The present study examines the effect of galanin (Gal 1–29), a pan ligand for GalR (1–3) and the GalR2/GalR3-selective ligand, Gal 2–11, on the electrophysiological properties of DRN serotonergic neurons in a slice preparation. We recorded from cells in the DRN with electrophysiological characteristics consistent with those of serotonergic neurons that exhibit high input resistance, large after-hyperpolarizations and long spike duration as defined by Aghajanian and Vandermaelen. Both Gal 1–29 and Gal 2–11 decreased the amplitudes pharmacologically-isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in these putative serotonergic neurons. Furthermore, based on paired pulse facilitation studies, we show that Gal 1–29 likely decreases GABA release through a presynaptic mechanism, whereas Gal 2–11 may act postsynaptically. These findings may enhance understanding of the cellular mechanisms underlying the effects of antidepressant treatments on galanin and galanin receptors in DRN. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

13.
J L Guan  Q P Wang  Y Nakai 《Peptides》1999,20(7):873-880
A simple preembedding avidin-biotin-peroxidase complex technique was used to study the ultrastructural localization of mu-opioid receptor in the rat area postrema. By using low concentrations of the first antiserum for incubation with a short reaction time to 3,3'-diaminobenzidine, the immunostaining was faint at the light microscopic level. However, at the electron microscopic level, strong immunoreaction was observed. Mu-Opioid receptors were found to be localized on the postsynaptic membrane of dendrites, extrasynaptic plasma membrane, and the surface of the small, clear vesicles in axon terminals. Of the total 283 immunopositive profiles observed, 68.2% (193 of 283) were dendrites, 29.3% (83 of 283) were axon terminals, and 2.5% (7 of 283) were myelinated axons. No immunostained neuron bodies were found in the present study; 109 mu-opioid receptor immunoreactive dendrites received synapses (56.5%, 109 of 193) from nonimmunoreactive (84.4%, 92 of 109) or immunoreactive (15.6%, 17 of 109) axon terminals, whereas 84 dendrites (43.5%, 84 of 193) were found without receiving synapses. The present study shows that the mu-opioid receptor in the area postrema plays a role mainly at the synapses.  相似文献   

14.
Summary The catecholaminergic innervation of thyrotropin-releasing hormone (TRH) neurons was examined by use of a combined method of 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline (3H-NA) and immunocytochemistry for TRH in the same tissue sections at the electron-microscopic level.TRH-like immunoreactive nerve cell bodies were distributed abundantly in the parvocellular part of the paraventricular nucleus (PVN), in the suprachiasmatic preoptic nucleus and in the dorsomedial nucleus of the rat hypothalamus. In the PVN, a large number of immunonegative axon terminals were found to make synaptic contact with TRH-like immunoreactive cell bodies and fibers. In the combined autoradiography or 5-OHDA labeling with immunocytochemistry, axon terminals labeled with 3H-NA or 5-OHDA were found to form synaptic contacts with the TRH immunoreactive nerve cell bodies and fibers. These findings suggest that catecholamine-containing neurons, probably noradrenergic, may innervate TRH neurons to regulate TRH secretion via synapses with other unknown neurons in the rat PVN.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

15.
Following a demonstration of Golgi-impregnated neurons and their terminal axon arborization in the optic tectum, the neurons of the nucleus parvocellularis and magnocellularis isthmi were studied by means of postembedded electron-microscopical (EM) γ-aminobutyric acid (GABA)-immunogold staining. In the parvocellular nucleus, none of the neuronal cell bodies or dendrites displayed GABA-like immunoreactivity in EM preparations stained by postembedded GABA-immunogold. However, numerous GABA-like immunoreactive and also unlabeled terminals established synapses with GABA-negative neurons. GABA-like immunoreactive terminals were usually found at the dendritic origin. Around the dendritic profiles, isolated synapses of both GABA-like immunoreactive and immunonegative terminals established glomerulus-like structures enclosed by glial processes. All giant and large neurons of the magnocellular nucleus of the isthmi displayed GABA-like immunoreactivity. Their cell surface was completely covered by GABA-like immunoreactive and unlabeled terminals that established synapses with the neurons. These neurons are thought to send axon collaterals to the parvocellular nucleus; their axons enter the tectum opticum. The morphological characteristics of neurons of both isthmic nuclei are like those of interneurons, because of their numerous axosomatic synapses with both asymmetrical and symmetrical features. These neurons are not located among their target neurons and exert their modulatory effect on optic transmission in the optic tectum at a distance.  相似文献   

16.
A study was made of retrograde axon transport of luminescent stains (primulin, fluoro-gold, fast blue, and nuclear yellow) from the spinal cord, the frontal cortex and lateral hypothalamus to various neuron groups of the periventricular gray matter of the midbrain and the dorsal tegmentum of the pons Varolii. Two large groups of serotonergic neurons are localized in the dorsomedial area of the dorsal raphe nucleus where projections to the thoracic segments of the spinal cord originate. Some of these neurons form divergent axon collaterals to the frontal cortex. Our data indicate that the antinociceptive effect of stimulating the "purely analgesic zone" of the midbrain periventricular gray matter may be due to direct involvement of the dorsal raphe nucleus in the descending control of impulsation induced by nociceptive stimulation at the spinal cord level. The neurotransmitter and neuromodulator role of separate cortical and hypothalamic projections of serotonin-containing neurons in the dorsal raphe nucleus is discussed.A. M. Gorky Medical Institute, Donetsk. A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 87–96, January–February, 1992.  相似文献   

17.
Extracellular recordings were made of spontaneously active neurons in the dorsal raphe nucleus (DRN) of neonatal rats. The firing pattern and rate of these neurons were similar to those characterized for 5-HT-containing cells in the DRN of adult rats. Neonatal DRN cells were also inhibiteby small systematic doses of LSD, as previously described for 5-HT-containing DRN neurons in adult rats. These results indicate that DRN neurons in neonatal rats are physiologically active and display many characteristics similar to mature 5-HT-containing DRN neurons.  相似文献   

18.
帕金森病大鼠中缝背核5-羟色胺能神经元电活动的变化   总被引:1,自引:1,他引:0  
Zhang QJ  Gao R  Liu J  Liu YP  Wang S 《生理学报》2007,59(2):183-189
本实验采用玻璃微电极细胞外记录法,观察了帕金森病(Parkinson’s disease,PD)大鼠中缝背核(dorsal raphe nucleus, DRN)5-羟色胺(5-hydroxytryptamine,5-HT)能神经元电活动的变化。在大鼠右侧中脑黑质致密部内微量注射6-羟多巴胺(6- hydroxydopamine,6-OHDA)制作PD模型。结果显示,对照组和PD组大鼠DRN中5-HT能神经元的放电频率分别是(1.76±0.11)spikes/s(n=24)和(2.43±0.17)spikes/(n=21),PD组大鼠的放电频率显著高于对照组(P<0.001)。在对照组大鼠,92%(22/24)的神经元呈规则放电,8%(2/24)为爆发式放电;在PD组大鼠,具有规则、不规则和爆发式放电的神经元比例分别为9%(2/21)、43%(9/21)和48%(10/21),爆发式放电的5-HT能神经元比例明显高于对照组(P<0.001)。在对照组大鼠,DRN内局部注射5-HT1A拮抗剂WAY-100635(3μg/200nL)显著增加5-HT能神经元的放电频率而不影响其放电形式(n=19,P<0.002);而WAY-100635不改变PD组大鼠5-HT能神经元的放电频率和放电形式(n=17,P>0.05)。结果提示,用6-OHDA损毁黑质致密部造成的PD模型大鼠中神经元5-HT1A受体功能失调,并且DRN参与PD的病理生理学机制。  相似文献   

19.
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behaviour and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared with wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus (DRN) revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the DRN, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an over-expression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the DRN by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.  相似文献   

20.
本文应用免疫细胞化学方法在光镜与电镜下观察了大鼠孤束核内脑啡肽样免疫反应(ENK-LI)阳性结构的分布特征和ENK-LI轴突终末的突触联系以及非突触性关系。结果表明:(1)经秋水仙素处理的大鼠,其孤束核内有许多ENK-LI胞体的分布;而未经秋水仙素处理的大鼠,其孤束核内可见密集的ENK-LI纤维与终末;ENK-LI胞体、纤维和终末主要分布于锥体交叉平面至闩平面的孤束核内侧亚核与胶状质亚核。(2)ENK-LI阳性产物主要定位于小圆形清亮囊泡外表面、大颗粒囊泡内和线粒体外表面等处。(3)ENK-LI轴突终末主要与阴性树突形成轴-树突触。(4)阴性轴突终末终止于ENK-LI轴突终末上,形成轴-轴突触。(5)ENK-LI轴突终末与阴性轴突终末形成非突触性的轴-轴并靠。以上结果提示孤束核内的ENK-LI神经成分主要通过突触后机制、也不排除突触前作用,参与孤束核中内脏信息的整合过程,而且这一作用又受到非ENK-LI神经成分的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号