首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MoS2 has emerged as a promising alternative electrocatalyst for the hydrogen evolution reaction (HER) due to high intrinsic per‐site activity on its edge sites and S‐vacancies. However, a significant challenge is the limited density of such sites. Reducing the size and layer number of MoS2 and vertically aligning them would be an effective way to enrich and expose such sites for HER. Herein, a facile self‐limited on‐site conversion strategy for synthesizing monolayer MoS2 in a couple of nanometers which are highly dispersed and vertically aligned on 3D porous carbon sheets is reported. It is discovered that the preformation of well‐dispersed MoO3 nanodots in 1–2 nm as limited source is the key for the fabrication of such an ultrasmall MoS2 monolayer. As indicated by X‐ray photoelectron spectroscopy and electron spin resonance data, these ultrasmall MoS2 monolayers are rich in accessible S‐edge sites and vacancies and the smaller MoS2 monolayers the more such sites they have, leading to enhanced electrocatalytic activity with a low overpotential of 126 mV at 10 mA cm?2 and 140 mV at 100 mA mg?1 for HER. This state‐of‐the‐art performance for MoS2 electrocatalysts enables the present strategy as a new avenue for exploring well‐dispersed ultrasmall nanomaterials as efficient catalysts.  相似文献   

2.
The efficient evolution of hydrogen through electrocatalysis is considered a promising approach to the production of clean hydrogen fuel. Platinum (Pt)‐based materials are regarded as the most active hydrogen evolution reaction (HER) catalysts. However, the low abundance and high cost of Pt hinders the large‐scale application of these catalysts. Active, inexpensive, and earth‐abundant electrocatalysts to replace Pt‐based materials would be highly beneficial to the production of cost‐effective hydrogen energy. Herein, a novel organoimido‐derivatized heteropolyoxometalate, Mo4‐CNP, is designed as a precursor for electrocatalysts of the HER. It is demonstrated that the carbon, nitrogen, and phosphorus sources derived from the Mo4‐CNP molecules lead to in situ confined carburization, phosphorization, and chemical doping on an atomic scale, thus forming nitrogen‐doped porous molybdenum carbide and phosphide hybrids, which exhibit remarkable electrocatalytic activity for the HER. Such an organically functionalized polyoxometalate‐assisted strategy described here provides a new perspective for the development of highly active non‐noble metal electrocatalysts for hydrogen evolution.  相似文献   

3.
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1.  相似文献   

4.
5.
Clean hydrogen production is highly promising to meet future global energy demands. The design of earth‐abundant materials with both high activity for hydrogen evolution reaction (HER) and electrochemical stability in both acidic and alkaline environments is needed, in order to enable practical applications. Here, the authors report a non‐noble 3d metal Cl‐chemical doping of liquid phase exfoliated single‐/few‐layer flakes of MoSe2 for creating MoSe2/3d metal oxide–hydr(oxy)oxide hybrid HER‐catalysts. It is proposed that the electron‐transfer from MoSe2 nanoflakes to metal cations and the chlorine complexation‐induced neutralization, as well as the in situ formation of metal oxide–hydr(oxy)oxides on the MoSe2 nanoflakes' surface, tailor the proton affinity of the catalysts, increasing the number and HER‐kinetics of their active sites in both acidic and alkaline electrolytes. The electrochemical coupling between doped‐MoSe2/metal oxide–hydr(oxy)oxide hybrids and single‐walled carbon nanotubes heterostructures further accelerates the HER process. Lastly, monolithic stacking of multiple heterostructures is reported as a facile electrode assembly strategy to achieve overpotential for a cathodic current density of 10 mA cm?2 of 0.081 and 0.064 V in 0.5 m H2SO4 and 1 m KOH, respectively. This opens up new opportunities to address the current density versus overpotential requirements targeted in pH‐universal hydrogen production.  相似文献   

6.
7.
A unique approach for the synthesis of nonstoichiometric, mesoporous molybdenum oxide (MoO3–x) with nanosized crystalline walls by using a soft template (PEO‐b‐PS) synthesis method is introduced. The as‐synthesized mesoporous MoO3–x is very active and stable (durability > 12 h) for the electrochemical hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The intrinsic MoO3 serves as an HER electrocatalyst without the assistance of carbon materials, noble metals, or MoS2 materials. The results from transmission electron microscopy and N2 sorption techniques show that the as‐synthesized mesoporous MoO3–x has large accessible pores (20–40 nm), which are able to facilitate mass transport and charge transfer during HER. In terms of X‐ray diffraction, X‐ray photoelectron spectroscopy, temperature‐programmed oxidation, and diffusive reflectance UV–vis spectroscopy, the mesoporous MoO3–x exhibits mixed oxidation states (Mo5+, Mo6+) and an oxygen‐deficient structure. The as‐synthesized MoO3–x only requires a low overpotential (≈0.14 V) to achieve a 10 mA cm?2 current density in 0.1 m KOH and the Tafel slope is as low as 56 mV dec?1. Density functional theory calculations demonstrate a change of electronic structure and the possible reaction pathway of HER. Oxygen vacancies and mesoporosity serve as key factors for excellent performance.  相似文献   

8.
Highly efficient and stable catalysts for the hydrogen evolution reaction, especially in alkaline conditions are crucial for the practical demands of electrochemical water splitting. Here, the synthesis of a novel RuAu single‐atom alloy (SAA) by laser ablation in liquid is reported. The SAA exhibits a high stability and a low overpotential, 24 mV@10 mA cm?2, which is much lower than that of a Pt/C catalyst (46 mV) in alkaline media. Moreover, the turnover frequency of RuAu SAA is three times that of Pt/C catalyst. Density functional theory computation indicates the excellent catalytic activity of RuAu SAAs originates from the relay catalysis of Ru and Au active sites. This work opens a new avenue toward high‐performance SAAs via fast quenching of immiscible metals.  相似文献   

9.
An efficient, durable, and low‐cost hydrogen evolution reaction (HER) catalyst is an essential requirement for practical hydrogen production. Herein, an effective approach to facilitate the HER kinetics of molybdenum carbide (Mo2C) electrocatalysts is presented by tuning its electronic structure through atomic engineering of nitrogen implantation. Starting from the organoimido‐derivatized polyoxometalate nanoclusters with inherent Mo? N bonds, the formation of N‐implanted Mo2C (N@Mo2C) nanocrystals with perfectly adjustable amounts of N atoms is demonstrated. The optimized N@Mo2C electrocatalyst exhibits remarkable HER performance and good stability over 20 h in both acid and basic electrolytes. Further density functional theory calculations show that engineering suitable nitrogen atoms into Mo2C can regulate its electronic structure well and decrease Mo? H strength, leading to a great enhancement of the HER activity. It could be believed that this ligand‐controlled atomic engineering strategy might influence the overall catalyst design strategy for engineering the activation sites of nonprecious metal catalysts for energy conversions.  相似文献   

10.
Hydrogen evolution by means of electrocatalytic water‐splitting is pivotal for efficient and economical production of hydrogen, which relies on the development of inexpensive, highly active catalysts. In addition to sulfides, the search for non‐noble metal catalysts has been mainly directed at phosphides due to the superb activity of phosphides for hydrogen evolution reaction (HER) and their low‐cost considering the abundance of the non‐noble constituents of phosphides. Here, recent research focusing on phosphides is summarized based on their synthetic methodology. A comparative study of the catalytic activity of different phosphides towards HER is then conducted. The catalytic activity is evaluated by overpotentials at fixed current density, Tafel slope, turnover frequency, and the Gibbs free energy of hydrogen adsorption. Based on the methods discussed, perspectives for the various methods of phosphides synthesis are given, and the origins of the high activity and the role of phosphorus on the improved activity towards HER are discussed.  相似文献   

11.
Direct photocatalytic water splitting is an attractive strategy for clean energy production, but multicomponent nanostructured systems that mimic natural photosynthesis can be difficult to fabricate because of the insolubility of most photocatalysts. Here, a solution‐processable organic polymer is reported that is a good photocatalyst for hydrogen evolution from water, either as a powder or as a thin film, suggesting future applications for soluble conjugated organic polymers in multicomponent photocatalysts for overall water splitting.  相似文献   

12.
13.
Copper(I) oxide (Cu2O) is an attractive photocatalyst because of its abundance, low toxicity, environmental compatibility, and narrow direct band gap, which allows efficient light harvesting. However, Cu2O exhibits poor photocatalytic performance and photostability because of its short electron diffusion length and low hole mobility. Here, it is demonstrated that nanodiamond (ND) can greatly improve the photocatalytic hydrogen evolution reaction (HER) of the p‐type photocatalyst Cu2O nanocrystals by nanocomposition. Compared with pure Cu2O nanocrystals, this composite shows a tremendous improvement in HER performance and photostability. HER rates of 100.0 mg NDs‐Cu2O nanocrystals are 1597 and 824 under the simulated solar light irradiation (AM 1.5, 100 mW cm?2) and visible light irradiation (420–760 nm, 77.5 mW cm?2), respectively. The solar‐to‐hydrogen conversion efficiency of this composite is 0.85%, which is nearly ten times higher than that of pure Cu2O. The quantum efficiency of the composite is high, with values of 0.17% at and 0.23% at . The broad spectral response of ND provides numerous carriers for the subsequent reactions. The electron‐donating ability of ND and suitable band structures of the two components promote electron injection from ND to Cu2O. These results suggest the broad applicability of ND to ameliorate the photoelectric properties of semiconductors.  相似文献   

14.
Highly efficient and stable organic photovoltaic (OPV) cells are demonstrated by incorporating solution‐processed hydrogen molybdenum bronzes as anode interlayers. The bronzes are synthesized using a sol‐gel method with the critical step being the partial oxide reduction/hydrogenation using an alcohol‐based solvent. Their composition, stoichiometry, and electronic properties strongly correlate with the annealing process to which the films are subjected after spin coating. Hydrogen molybdenum bronzes with moderate degree of reduction are found to be highly advantageous when used as anode interlayers in OPVs, as they maintain a high work function similar to the fully stoichiometric metal oxide, whereas they exhibit a high density of occupied gap states, which are beneficial for charge transport. Enhanced short‐circuit current, open‐circuit voltage and, fill factor, relative to reference devices incorporating either PEDOT‐PSS or a solution processed stoichiometric molybdenum oxide, are obtained for a variety of bulk heterojunction mixtures based on different polymeric donors and fullerene acceptors. In particular, high power conversion efficiencies are obtained in devices that employed the s‐HxMoO2.75 as the hole extraction layer.  相似文献   

15.
16.
Green plants use solar energy efficiently in nature. Simulating the exquisite structure of a natural photosynthesis system may open a new approach for the construction of desirable photocatalysts with high light harvesting efficiency and performance. Herein, inspired by the excellent light utilization of “leaf mosaic” in plants, a novel vine‐like g‐C3N4 (V‐CN) is synthesized for the first time by copolymerizing urea with dicyandiamide‐formaldehyde (DF) resin. The as‐prepared V‐CN exhibits ultrahigh photocatalytic hydrogen production of 13.6 mmol g?1 h?1 under visible light and an apparent quantum yield of 12.7% at 420 nm, which is ≈38 times higher than that of traditional g‐C3N4, representing one of the highest‐activity g‐C3N4‐based photocatalysts. This super photocatalytic performance is derived from the unique leaf mosaic structure of V‐CN, which effectively improves its light utilization and affords a larger specific surface area. In addition, the introduction of DF resin further optimizes the energy band of V‐CN, extends its light absorption, and improves its crystallinity and interfacial charge transport, resulting in high performance. It is an easy and green strategy for the preparation of broad‐spectrum, high‐performance g‐C3N4, which presents significant advancement for the design of other nanophotocatalysts by simulating the fine structure of natural photosynthesis.  相似文献   

17.
The proper choice of nonprecious transition metals as single atom catalysts (SACs) remains unclear for designing highly efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, reported is an activity correlation with catalysts, electronic structure, in order to clarify the origin of reactivity for a series of transition metals supported on nitrogen‐doped graphene as SACs for HER by a combination of density functional theory calculations and electrochemical measurements. Only few of the transition metals (e.g., Co, Cr, Fe, Rh, and V) as SACs show good catalytic activity toward HER as their Gibbs free energies are varied between the range of –0.20 to 0.30 eV but among which Co‐SAC exhibits the highest electrochemical activity at 0.13 eV. Electronic structure studies show that the energy states of active valence dz2 orbitals and their resulting antibonding state determine the catalytic activity for HER. The fact that the antibonding state orbital is neither completely empty nor fully filled in the case of Co‐SAC is the main reason for its ideal hydrogen adsorption energy. Moreover, the electrochemical measurement shows that Co‐SAC exhibits a superior hydrogen evolution activity over Ni‐SAC and W‐SAC, confirming the theoretical calculation. This systematic study gives a fundamental understanding about the design of highly efficient SACs for HER.  相似文献   

18.
CuO as a catalyst has shown promising application prospects in photocatalytic splitting of water into hydrogen (H2). However, the instability of CuO in amine aqueous solution limits the applications of CuO‐based photocatalysts in the photocatalytic H2 evolution. In this work, a novel dodecahedral nitrogen (N)‐doped carbon (C) coated CuO‐In2O3 p–n heterojunction (DNCPH) is designed and synthesized by directly pyrolyzing benzimidazole‐modified dodecahedral Cu/In‐based metal‐organic frameworks, showing long‐term stability in triethanolamine (TEOA) aqueous solution and excellent photocatalytic H2 production efficiency. The improved stability of DNCPH in TEOA solution is ascribed to the alleviation of electron deficiency in CuO by forming the p–n heterojunction and the protection with coated N‐doped C layer. Based on detailed theoretical calculations and experimental studies, it is found that the improved separation efficiency of photogenerated electron/hole pairs and the mediated adsorption behavior (|?GH*|→0) by coupling N‐doped C layer with CuO‐In2O3 p–n heterojunction lead to the excellent photocatalytic H2 production efficiency of DNCPH. This work provides a feasible strategy for effectively applying CuO‐based photocatalysts in photocatalytic H2 production.  相似文献   

19.
Rational synthesis of hybrid, earth‐abundant materials with efficient electrocatalytic functionalities are critical for sustainable energy applications. Copper is theoretically proposed to exhibit high reduction capability close to Pt, but its high diffusion behavior at elevated fabrication temperatures limits its homogeneous incorporation with carbon. Here, a Cu, Co‐embedded nitrogen‐enriched mesoporous carbon framework (CuCo@NC) is developed using, a facile Cu‐confined thermal conversion strategy of zeolitic imidazolate frameworks (ZIF‐67) pre‐grown on Cu(OH)2 nanowires. Cu ions formed below 450 °C are homogeneously confined within the pores of ZIF‐67 to avoid self‐aggregation, while the existence of Cu? N bonds further increases the nitrogen content in carbon frameworks derived from ZIF‐67 at higher pyrolysis temperatures. This CuCo@NC electrocatalyst provides abundant active sites, high nitrogen doping, strong synergetic coupling, and improved mass transfer, thus significantly boosting electrocatalytic performances in oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A high half‐wave potential (0.884 V vs reversible hydrogen potential, RHE) and a large diffusion‐limited current density are achieved for ORR, comparable to or exceeding the best reported earth‐abundant ORR electrocatalysts. In addition, a low overpotential (145 mV vs RHE) at 10 mA cm?2 is demonstrated for HER, further suggesting its great potential as an efficient electrocatalyst for sustainable energy applications.  相似文献   

20.
The search for Pt‐free electrocatalysts exceeding pH‐universal hydrogen evolution reaction (HER) activities when compared to the state‐of‐the‐art commercial Pt/C is highly desirable for the development of renewable energy conversion systems but still remains a huge challenge. Here a colloidal synthesis of monodisperse Rh2P nanoparticles with an average size of 2.8 nm and their superior catalytic activities for pH‐universal HER are reported. Significantly, the Rh2P catalyst displays remarkable HER performance with overpotentials of 14, 30, and 38 mV to achieve 10 mA cm?2 in 0.5 m H2SO4, 1.0 m KOH, and 1.0 m phosphate‐buffered saline, respectively, exceeding almost all the documented electrocatalysts, including the commercial 20 wt% Pt/C. Density functional theory calculations reveal that the introduction of P into Rh can weaken the H adsorption strength of Rh2P to nearly zero, beneficial for boosting HER performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号