首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal‐air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li‐air and Zn‐air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li‐air and Zn‐air batteries, with the aim of providing a better understanding of the new electrochemical systems.  相似文献   

19.
Owing to the high voltage of lithium‐ion batteries (LIBs), the dominating electrolyte is non‐aqueous. The idea of an aqueous rechargeable lithium battery (ARLB) dates back to 1994, but it had attracted little attention due to the narrow stable potential window of aqueous electrolytes, which results in low energy density. However, aqueous electrolytes were employed during the 2000s for the fundamental studies of electrode materials in the absence of side reactions such as the decomposition of organic species. The high solubility of lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in water has introduced new opportunities for high‐voltage ARLBs. Nonetheless, these ideas are somehow overshadowed by the common perception about the essential limitation of the aqueous electrolyte. The electrochemical behaviour of conventional electrode materials can be substantially tuned in the water‐in‐salt electrolytes. The latest idea of utilising a graphite anode in the aqueous water‐in‐salt electrolytes has paved the way towards not only 4‐V ARLB but also a new generation of Li?S batteries with a higher operating voltage and energy efficiency. Furthermore, aqueous electrolytes can provide a cathodically stable environment for Li?O2 batteries. The present paper aims to highlight these emerging opportunities possibly leading to a new generation of LIBs, which can be substantially cheaper and safer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号