首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The trends in miniaturization of electronic devices give rise to the attention of energy harvesting technologies that gathers tiny wattages of power. Here this study demonstrates an ultrathin flexible single electrode triboelectric nanogenerator (S‐TENG) which not only could harvest mechanical energy from human movements and ambient sources, but also could sense instantaneous force without extra energy. The S‐TENG, which features an extremely simple structure, has an average output current of 78 μA, lightening up at least 70 LEDs (light‐emitting diode). Even tapped by bare finger, it exhibits an output current of 1 μA. The detection sensitivity for instantaneous force sensing is about 0.947 μA MPa?1. Performances of the device are also systematically investigated under various motion types, press force, and triboelectric materials. The S‐TENG has great application prospects in sustainable wearable devices, sustainable medical devices, and smart wireless sensor networks owning to its thinness, light weight, energy harvesting, and sensing capacities.  相似文献   

2.
Electronics wastes (e‐wastes) are the major concern in the rapid expansion of smart/wearable/portable electronics in modern high‐tech society. Informal processing and enormous gathering of e‐wastes can lead to adverse human/animal health effects and environmental pollution worldwide. Currently, these issues are a big headache and require the scientific community to develop effective green energy harvesting technologies using biodegradable/biocompatible materials. Piezoelectric/triboelectric nanogenerators (PNGs/TNGs) are considered one of the most promising renewable green energy sources for the conversion of mechanical/biomechanical energies into electricity. However, organic/inorganic material based PNGs/TNGs are very much incompatible, and considered e‐wastes for their non‐biodegradability. This review covers potential uses of biodegradable/biocompatible materials which are wasted every day as nature driven material based bio‐nanogenerators with a particular focus on their applications in flexible PNGs/TNGs fabrication. Structural investigation and possible working principles are described first in order to outline the basic mechanism of bio‐inspired materials behind energy harvesting. Then, energy harvesting abilities and the mechanical sensing of bio‐inspired integrated flexible devices are discussed under various mechanical/biomechanical activities. Finally, their potential applications in various flexible, wearable, and portable electronic fields are demonstrated. These bio‐inspired energy harvesting devices can make huge changes in fields as diverse as portable electronics, in vitro/in vivo biomedical applications, and many more.  相似文献   

3.
Packaging is a critical aspect of triboelectric nanogenerators (TENG) toward practical applications, since the performance of TENG is greatly affected by environmental conditions such as humidity. A waterproof triboelectric–electromagnetic hybrid generator (WPHG) for harvesting mechanical energy in harsh environments is reported. Since the mechanical transmission from the external mechanical source to the TENG is through a noncontact force between the paired magnets, a fully isolated packaging of TENG part can be easily achieved. At the same time, combining with metal coils, these magnets can be fabricated to be electromagnetic generators (EMG). The characteristics and advantages of outputs from both TENG and EMG are systematically studied and compared to each other. By using transformers and full‐wave rectifiers, 2.3 mA for total short‐circuit current and 5 V for open‐circuit voltage are obtained for WPHG under a rotation speed of 1600 rpm, and it can charge a supercapacitor (20 mF) to 1 V in 22s. Finally, the WPHG is demonstrated to harvest wind energy in the rainy condition and water‐flow energy under water. The reported WPHG renders an effective and sustainable technology for ambient mechanical energy harvesting in harsh environments. Solid progress in both the packaging of TENG and the practical applications of the hybrid generator toward practical power source and self‐powered systems is presented.  相似文献   

4.
5.
Healthcare monitoring systems can provide important health state information by monitoring the biomechanical parameter or motion of body segments. Triboelectric nanogenerators (TENGs) as self‐powered motion sensors have been developed rapidly to convert external mechanical change into electrical signal. However, research effort on using TENGs for multiaxis acceleration sensing is very limited. Moreover, TENG has not been demonstrated for rotation sensing to date. Herein, for the first time, a 3D symmetric triboelectric nanogenerator‐based gyroscope ball (T‐ball) with dual capability of energy harvesting and self‐powered sensing is proposed for motion monitoring including multiaxis acceleration and rotation. The T‐ball can harvest energy under versatile scenarios and function as self‐powered 3D accelerometer with sensitivity of 6.08, 5.87, and 3.62 V g ?1 . Furthermore, the T‐ball can serve as a self‐powered gyroscope for rotation sensing with sensitivity of 3.5 mV so?1. It shows good performance in hand motion recognition and human activity state monitoring applications. The proposed T‐ball as a self‐powered gyroscope for advanced motion sensing can pave the way to a self‐powered, more accurate, and more complete motion monitoring system.  相似文献   

6.
The newly invented triboelectric nanogenerator (TENG) is deemed to be a more efficient strategy than an electromagnetic generator (EMG) in harvesting low‐frequency (<2 Hz) water wave energy. Various TENGs with different structures and functions for blue energy have been developed, which can be roughly divided into two types: liquid–solid contact electrification TENGs and fully enclosed solid–solid contact electrification TENGs. Robustness and packaging are critical factors in the development of TENGs toward practical applications. Furthermore, for fully enclosed TENGs, the requirements and costs of packaging are very high, and they can difficult to disassemble after enclosed, if there is something wrong with the devices. Herein, a nonencapsulative pendulum‐like paper based hybrid nanogenerator for energy harvesting is designed, which mainly consists of three parts, one solar panel, two paper based zigzag multilayered TENGs, and three EMG units. This unique structure reveals the superior robustness and a maximum peak power of zigzag multilayered TENGs up to 22.5 mW is realized. Moreover, the device can be used to collect the mechanical energy of human motion in hand shaking. This work presents a new platform of hybrid generators toward energy harvesting as a portable practical power source, which has potential applications in navigation and lighting.  相似文献   

7.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

8.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state‐of‐the‐art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energy‐based technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self‐powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve‐cell stimulating, orthodontic treatment and real‐time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed.  相似文献   

9.
Vibration in mechanical equipment can serve as a sustainable energy source to power sensors and devices if it can be effectively collected. In this work, a honeycomb structure inspired triboelectric nanogenerator (HSI‐TENG) consisting of two copper electrode layers with sponge bases and one honeycomb frame filled with polytetrafluoroethylene (PTFE) balls is proposed to harvest vibration energy. The application of a compact honeycomb structure increases the maximum power density of HSI‐TENG by 43.2% compared to the square grid structure and provides superior advantages in large‐scale manufacturing. More importantly, the nonspring‐assisted HSI‐TENG can generate electricity once the PTFE balls obtain sufficient kinetic energy to separate from the bottom electrode layer regardless of the vibration frequency and direction. This is fundamentally different from the spring‐assisted harvesters that can only work around their natural frequencies. The vibration model and working criteria of the HSI‐TENG are established. Furthermore, the HSI‐TENG is successfully used to serve as a self‐powered sensor to monitor engine conditions by analyzing the electrical output of the HSI‐TENG installed on a diesel engine. Therefore, the nonspring‐assisted HSI‐TENG provides a novel strategy for highly effective vibration energy harvesting and self‐powered machinery monitoring.  相似文献   

10.
11.
Wearable and portable electronics have brought great convenience. These battery‐powered commercial devices have a limited lifetime and require recharging, which makes more extensive applications challenging. Here, a battery‐like self‐charge universal module (SUM) is developed, which is able to efficiently convert mechanical energy into electrical energy and store it in one device. An integrated SUM consists of a power management unit and an energy harvesting unit. Compared to other mechanical energy harvesting devices, SUM is more ingenious, efficient and can be universally used as a battery. Under low frequency (5 Hz), a SUM can deliver an excellent normalized output power of 2 mW g?1. After carrying several SUMs and jogging for 10 min, a commercial global positioning system module is powered and works continuously for 0.5 h. SUMs can be easily assembled into different packages for powering various commercial electronics, demonstrating the great application prospects of SUM as a sustainable battery‐like device for wearable and portable electronics.  相似文献   

12.
By harvesting the flowing kinetic energy of water using a rotating triboelectric nanogenerator (R‐TENG), this study demonstrates a self‐powered wastewater treatment system that simultaneously removes rhodamine B (RhB) and copper ions through an advanced electrochemical unit. With the electricity generated by R‐TENG, the removal efficiency (RE) of RhB can reach the vicinity of 100% within just 15 min when the initial concentration of RhB is around 100 ppm at optimized conditions. The removal efficiency of copper ions can reach 97.3% after 3 h within an initial concentration of 150 ppm at an optimized condition. Importantly, a better performance and higher treating efficiency are found by using the pulsed output of R‐TENG than those using direct current (DC) supply for pollutant removal when consuming equal amount of energy. The recovered copper layer on the cathode through R‐TENG is much denser, more uniform, and with smaller grain size (d = 20 nm) than those produced by DC process, which also hints at very promising applications of the R‐TENG in electroplating industry. In light of the merits such as easy portability, low cost, and effectiveness, this R‐TENG‐based self‐powered electrochemical system holds great potential in wastewater treatment and electroplating industry.  相似文献   

13.
With the development of the Internet of Things (IoTs), widely distributed electronics in the environment require effective in situ energy harvesting technologies, which is made challenging by the unstable supply and severe conditions in some environments. In this work, a hybrid all‐in‐one power source (AoPS) is demonstrated for widely adaptive environmental energy harvesting. With a novel structure, the AoPS hybridizes high‐performance spherical triboelectric nanogenerators (TENGs) with solar cells, enabling the harvesting of most typical environmental energies from wind, rain drops, and sun light, for complementary supply. The spherical TENG units with a packaged structure can work robustly to collect energy from fluid. Nearly continuous direct current and a high average power of 5.63 mW can be obtained by four TENG units, which is further complemented by solar cells. Typical application scenarios are also demonstrated, achieving self‐powered soil moisture control, forest fire prevention and pipeline monitoring. The work realizes the concept of an environmental power source that can be deployed in the environment with high adaptability to make use of all kinds of surrounding energies for powering electronics in all‐weather conditions, providing a reliable foundation for the era of the IoTs.  相似文献   

14.
Wearable electronics suffer from severe power shortage due to limited working time of Li‐ion batteries, and there is a desperate need to build a hybrid device including energy scavenging and storing units. However, previous attempts to integrate the two units are mainly based on simple external connections and assembly, so that maintaining small volume and low manufacturing cost becomes increasingly challenging. Here a convoluted power device is presented by hybridizing internally a solid Li‐ion battery (SLB) and a triboelectric nanogenerator (TENG), so that the two units are one inseparable entity. The fabricated device acts as a TENG that can deliver a peak output power of 7.4 mW under a loading resistance of 7 MΩ, while the device also acts as an SLB to store the obtained electric energy. The device can be mounted on a human shoe to sustainably operate a green light‐emitting diode, thus demonstrating potential for self‐powered wearable electronics.  相似文献   

15.
16.
17.
Triboelectric nanogenerators (TENGs), as a promising energy harvesting technology, have been rapidly developed in recent years. However, the research based on fully flexible and environmentally friendly TENGs is still limited. Herein, for the first time, a hydrogel‐based triboelectric nanogenerator (Hydrogel‐TENG) with high flexibility, recyclability, and environmental friendliness simultaneously has been demonstrated. The standard Hydrogel‐TENG can generate a maximum output power of 2 mW at a load resistance of 10 MΩ. The tube‐shaped Hydrogel‐TENG can harvest mechanical energy from various human motions, including bending, twisting, and stretching. Furthermore, the system can serve as self‐powered sensors to detect the human motions. Additionally, the utilized Polyvinyl Alcohol hydrogel employed in this study is recyclable to benefit for fabricating the renewable TENG. The open‐circuit voltage of renewed hydrogel‐TENG can reach up to 92% of the pristine output voltage. This research will pave a potential approach for the development of flexible energy sources and self‐powered motion sensors in environmentally friendly way.  相似文献   

18.
This paper presents a fully enclosed duck‐shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low‐frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck‐shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m?2. Following the design, a fluid–solid interaction analysis is carried out on one duck‐shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck‐shaped TENG shows a simple, cost‐effective, environmentally friendly, light‐weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.  相似文献   

19.
Vibration is a common mechanical phenomenon and possesses mechanical energy in ambient environment, which can serve as a sustainable source of power for equipment and devices if it can be effectively collected. In the present work, a novel soft and robust triboelectric nanogenerator (TENG) made of a silicone rubber‐spring helical structure with nanocomposite‐based elastomeric electrodes is proposed. Such a spring based TENG (S‐TENG) structure operates in the contact‐separation mode upon vibrating and can effectively convert mechanical energy from ambient excitation into electrical energy. The two fundamental vibration modes resulting from the vertical and horizontal excitation are analyzed theoretically, numerically, and experimentally. Under the resonant states of the S‐TENG, its peak power density is found to be 240 and 45 mW m?2 with an external load of 10 MΩ and an acceleration amplitude of 23 m s?2. Additionally, the dependence of the S‐TENG's output signal on the ambient excitation can be used as a prime self‐powered active vibration sensor that can be applied to monitor the acceleration and frequency of the ambient excitation. Therefore, the newly designed S‐TENG has a great potential in harvesting arbitrary directional vibration energy and serving as a self‐powered vibration sensor.  相似文献   

20.
Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self‐powered speed sensor of wind by correlating the short‐circuit current with the wind speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号