首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The all‐solution‐processed switchable interconnecting layer (ICL) for both inverted and normal tandem organic solar cells (OSCs) is reported for the first time here. The fundamental challenges in the literature arise from mixing multiple functionalities into a single layer. For a widely used ICL composed of an electron transport layer (ETL)/a hole transport layer (HTL), ETL needs not only to efficiently extract electrons from an underneath photoactive layer, but also to fulfill optical, mechanical, chemical and electrical requirements to function as effective tunneling junction ICL with HTL atop. Taking on multiple functionalities for a single ETL makes ETL in ICL highly coupled and difficult to be replaced. This is also the case for HTL. Here, this study demonstrates an all‐solution‐processed switchable ICL, ETL/recombination layer (RL)/HTL and HTL/RL/ETL, for both normal and inverted tandem OSCs. In switchable ICL, ETL and HTL simply serve as carrier transport layers as they did in single OSCs. Electrical recombination, mechanical protection and chemical separation functionalities are realized by RL alone. This strategy shifts the views of ICL for tandem OSCs from conventionally complicated ETL/HTL tunneling junction ICL, where both ETL and HTL play several different roles, towards simplified ICL where ETL and HTL play a distinct decoupled role, advancing ICL for more adaptable tandem OSCs.  相似文献   

2.
The performance of tandem organic solar cells (OSCs) is directly related to the functionality and reliability of the interconnecting layer (ICL). However, it is a challenge to develop a fully functional ICL for reliable and reproducible fabrication of solution‐processed tandem OSCs with minimized optical and electrical losses, in particular for being compatible with various state‐of‐the‐art photoactive materials. Although various ICLs have been developed to realize tandem OSCs with impressively high performance, their reliability, reproducibility, and generic applicability are rarely analyzed and reported so far, which restricts the progress and widespread adoption of tandem OSCs. In this work, a robust and fully functional ICL is developed by incorporating a hydrolyzed silane crosslinker, (3‐glycidyloxypropyl)trimethoxysilane (GOPS), into poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and its functionality for reliable and reproducible fabrication of tandem OSCs based on various photoactive materials is validated. The cross‐linked ICL can successfully protect the bottom active layer against penetration of high boiling point solvents during device fabrication, which widely broadens the solvent selection for processing photoactive materials with high quality and reliability, providing a great opportunity to continuously develop the tandem OSCs towards future large‐scale production and commercialization.  相似文献   

3.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

4.
Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.  相似文献   

5.
A new metal‐oxide‐based interconnecting layer (ICL) structure of all‐solution processed metal oxide/dipole layer/metal oxide for efficient tandem organic solar cell (OSC) is demonstrated. The dipole layer modifies the work function (WF) of molybdenum oxide (MoO x ) to eliminate preexisted counter diode between MoO x and TiO2. Three different amino functionalized water/alcohol soluble conjugated polymers (WSCPs) are studied to show that the WF tuning of MoO x is controllable. Importantly, the results show that S‐shape current density versus voltage (JV) characteristics form when operation temperature decreases. This implies that thermionic emission within the dipole layer plays critical role for helping recombination of electrons and holes. Meanwhile, the insignificant homotandem open‐circuit voltage (V oc) loss dependence on dipole layer thickness shows that the quantum tunneling effect is weak for efficient electron and hole recombination. Based on this ICL, poly(3‐hexylthiophene) (P3HT)‐based homotandem OSC with 1.20 V V oc and 3.29% power conversion efficiency (PCE) is achieved. Furthermore, high efficiency poly(4,8‐bis(5‐(2‐ethylhexyl)‐thiophene‐2‐yl)‐benzo[1,2‐b54,5‐b9]dithiophene‐alt alkylcarbonylthieno[3,4‐b]thiophene) (PBDTTT‐C‐T)‐based homotandem OSC with 1.54 V V oc and 8.11% PCE is achieved, with almost 15.53% enhancement compared to its single cell. This metal oxide/dipole layer/metal oxide ICL provides a new strategy to develop other qualified ICL with different hole transporting layer and electron transporting layer in tandem OSCs.  相似文献   

6.
Remarkable progress has been made in the development of high‐efficiency solution‐processable nonfullerene organic solar cells (OSCs). However, the effect of the vertical stratification of bulk heterojunction (BHJ) on the efficiency and stability of nonfullerene OSCs is not fully understood yet. In this work, we report our effort to understand the stability of nonfullerene OSCs, made with the binary blend poly[(2,6‐(4, 8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′] dithiophene‐4,8‐dione)] (PBDB‐T):3,9‐ bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐ dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′] dithiophene (ITIC) system. It shows that a continuous vertical phase separation process occurs, forming a PBDB‐T‐rich top surface and an ITIC‐rich bottom surface in PBDB‐T:ITIC BHJ during the aging period. A gradual decrease in the built‐in potential (V0) in the regular configuration PBDB‐T:ITIC OSCs, due to the interfacial reaction between the poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer and ITIC acceptor, is one of the reasons responsible for the performance deterioration. The reduction in V0, caused by an inevitable reaction at the ITIC/PEDOT:PSS interface in the OSCs, can be suppressed by introducing a MoO3 interfacial passivation layer. Retaining a stable and high V0 across the BHJ through interfacial modification and device engineering, e.g., as seen in the inverted PBDB‐T:ITIC OSCs, is a prerequisite for efficient and stable operation of nonfullerene OSCs.  相似文献   

7.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   

8.
The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7‐Th donor and 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene) (ITIC) acceptor fabricated by doctor‐blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large‐area (2.03 cm2) indium tin oxide (ITO)‐free doctor‐bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin‐coated counterpart. To understand the mechanism of the performance enhancement with doctor‐blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor‐blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8‐diiodooctane that prolongs the dynamic drying time of the doctor‐bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large‐area ITO‐free doctor‐bladed nonfullerene OSCs indicates the feasibility of doctor‐blade printing in large‐scale fullerene‐free OSC manufacturing. For the first time, the open‐circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.  相似文献   

9.
Photovoltaic tandem technology has the potential to boost the power conversion efficiency of organic photovoltaic devices. Here, a reliable and efficient fully solution‐processed intermediate layer (IML) consisting of ZnO and neutralized poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series‐connected multi‐junction organic solar cells (OSCs). Drying at 80 °C in air is sufficient for this solution‐processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure. An open circuit voltage (Voc) of 0.56 V is obtained for single‐junction OSCs based on a low band‐gap polymer, while multi‐junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive Voc as the number of junctions increase. Optical and electrical simulations, which are reliable and promising guidelines for the design and investigation of multi‐junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution‐processed IML. The demonstration of this efficient, solution‐processed IML represents a convenient way for facilitating fabrication of multi‐junction OSCs to achieve high power conversion efficiency.  相似文献   

10.
Currently, constructing ternary organic solar cells (OSCs) and developing nonfullerene small molecule acceptors (n‐SMAs) are two pivotal avenues to enhance the device performance. However, introducing n‐SMAs into the ternary OSCs to construct thick layer device is still a challenge due to their inferior charge transport property and unclear aggregation mechanism. In this work, a novel wide band gap copolymer 4,8‐bis(4,5‐dioctylthiophen‐2‐yl) benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐N‐(2‐hexyldecyl)‐5,5′‐bis(thiophen‐2‐yl)‐2,2′‐bithiophene‐3,3′‐dicarboximide (PDOT) is designed and blend of PDOT:PC71BM achieves a power conversion efficiency (PCE) of 9.5% with active layer thickness over 200 nm. The rationally selected n‐SMA based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene) malononitrile groups (ITIC) is introduced into the host binary PDOT:PC71BM system to extend the absorption range and reduce the photo energy loss. After fully investigating the morphology evolution of the ternary blends, the different aggregation behavior of n‐SMAs with respect to their fullerene counterpart is revealed and the adverse effect of introducing n‐SMAs on charge transport is successfully avoided. The ternary OSC delivers a PCE of 11.2% with a 230 nm thick active layer, which is among the highest efficiencies of thick layer OSCs. The results demonstrate the feasibility of using n‐SMAs to construct a thick layer ternary device for the first time, which will greatly promote the efficiency of thick layer ternary devices.  相似文献   

11.
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films.  相似文献   

12.
A solution‐processed neutral hole transport layer is developed by in situ formation of MoO3 in aqueous PEDOT:PSS dispersion (MoO3‐PEDOT:PSS). This MoO3‐PEDOT:PSS composite film takes advantage of both the highly conductive PEDOT:PSS and the ambient conditions stability of MoO3; consequently it possesses a smooth surface and considerably reduced hygroscopicity. The resulting bulk heterojunction polymer solar cells (BHJ PSC) based on poly[2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐diyl‐alt‐thiophene‐2,5‐diyl] (TQ1):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) blends using MoO3‐PEDOT:PSS composite film as hole transport layer (HTL) show considerable improvement in power conversion efficiency (PCE), from 5.5% to 6.4%, compared with the reference pristine PEDOT:PSS‐based device. More importantly, the device with MoO3‐PEDOT:PSS HTL shows considerably improved stability, with the PCE remaining at 80% of its original value when stored in ambient air in the dark for 10 days. In comparison, the reference solar cell with PEDOT:PSS layer shows complete failure within 10 days. This MoO3‐PEDOT:PSS implies the potential for low‐cost roll‐to‐roll fabrication of high‐efficiency polymer solar cells with long‐term stability at ambient conditions.  相似文献   

13.
Transparent top electrodes for solid‐state dye‐sensitized solar cells (ssDSCs) allow for fabrication of mechanically stacked ssDSC tandems, partially transparent ssDSCs for building integration, and ssDSCs on metal foil substrates. A solution‐processed, highly transparent, conductive electrode based on PEDOT:PSS [poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)] and spray‐deposited silver nanowires (Ag NWs) is developed as an effective top contact for ssDSCs. The electrode is solution‐deposited using conditions and solvents that do not damage or dissolve the underlying ssDSC and achieves high performance: a peak transmittance of nearly 93% at a sheet resistance of 18 Ω/square – all without any annealing that would harm the ssDSC. The role of the PEDOT:PSS in the electrode is twofold: it ensures ohmic contact between the ssDSC 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)9,9′‐spirobifluorene (Spiro‐OMeTAD) overlayer and the silver nanowires and it decreases the series resistance of the device. Semitransparent ssDSCs with D35 dye fabricated using this Ag NW/PEDOT:PSS transparent electrode show power conversion efficiencies of 3.6%, nearly as high as a reference device using an evaporated silver electrode (3.7%). In addition, the semitransparent ssDSC shows high transmission between 700–1100 nm, a necessity for use in efficient tandem devices. Such an electrode, in combination with efficient ssDSCs or hybrid perovskite‐sensitized solar cells, can allow for the fabrication of efficient, cost‐effective tandem photovoltaics.  相似文献   

14.
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high‐performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a‐SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double‐layer structure of TiO2 compact layer (c‐TiO2) and a‐SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a‐SnO2/c‐TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c‐TiO2 based device. Moreover, the modified device demonstrates a maximum open‐circuit voltage (Voc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c‐TiO2/a‐SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c‐TiO2 (67%) based devices. Interestingly, using a‐SnO2/c‐TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c‐TiO2 based device (28% PCE loss).  相似文献   

15.
Organic solar cells are promising in terms of full‐solution‐processing which enables low‐cost and large‐scale fabrication. While single‐junction solar cells have seen a boost in power conversion efficiency (PCE), multi‐junction solar cells are promising to further enhance the PCE. In all‐solution‐processed multi‐junction solar cells, interfacial losses are often encountered between hole‐transporting layer (HTL) and the active layers and therefore greatly limit the application of newly developed high‐performance donor and acceptor materials in multi‐junction solar cells. Here, the authors report on a systematic study of interface losses in both single‐junction and multi‐junction solar cells based on representative polymer donors and HTLs using electron spectroscopy and time‐of‐flight secondary ion mass spectrometry. It is found that a facile mixed HTL containing poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and MoO x nanoparticles successfully overcomes the interfacial losses in both single‐ and multi‐junction solar cells based on various active layers by reducing interface protonation, promoting better energy‐level alignment, and forming a dense and smooth layer. Solution‐processed single‐junction solar cells are demonstrated to reach the same performance as with evaporated MoO x (over 7%). Multi‐junction solar cells with polymers containing nitrogen atoms as the first layer and the mixed PEDOT:PSS and MoO x nanoparticles as hole extraction layer reach fill factor (FF) of over 60%, and PCE of over 8%, while the identical stack with pristine PEDOT:PSS or MoO x nanoparticles show FF smaller than 50% and PCE less than 5%.  相似文献   

16.
A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]:phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b] thiophenediyl]] (PTB7):PC71BM by ≈13% and ≈8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near‐field and far‐field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near‐fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.  相似文献   

17.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

18.
We demonstrate solution‐processed tungsten trioxide (WO3) incorporated as hole extraction layer (HEL) in polymer solar cells (PSCs) with active layers comprising either poly(3‐hexylthiophene) (P3HT) or poly[(4,4'‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,50‐diyl] (Si‐PCPDTBT) mixed with a fullerene derivative. The WO3 layers are deposited from an alcohol‐based, surfactant‐free nanoparticle solution. A short, low‐temperature (80 °C) annealing is sufficient to result in fully functional films without the need for an oxygen‐plasma treatment. This allows the application of the WO3 buffer layer in normal as well as inverted architecture solar cells. Normal architecture devices based on WO3 HELs show comparable performance to the PEDOT:PSS reference devices with slightly better fill factors and open circuit voltages. Very high shunt resistances (over 1 MΩ cm2) and excellent diode rectification underline the charge selectivity of the solution‐processed WO3 layers.  相似文献   

19.
Whether bis(2‐(2′‐benzo[4,5‐α]thienyl)pyridinato‐N,C3′)iridium(acetylacetonate) (btp2Ir(acac)) emission comes from carrier trapping and/or energy transfer, when doped in the 4,4′‐bis(N‐carbazolyl)biphenyl (CBP) host in organic light‐emitting devices, is not clear; therefore, the btp2Ir(acac) emission in CBP hosts was studied. In the red‐doped device, both N,N′‐bis(1‐naphthyl)‐N,N′‐diphenyl‐1.1′‐bipheny1–4‐4′‐diamine (NPB) and (1,1′‐biphenyl‐4′‐oxy)bis(8‐hydroxy‐2‐methylquinolinato)‐aluminum (BAlq) emission appeared, which illustrated that CBP excitons cannot be formed at two emissive layer (EML) interfaces in the device. In the co‐doped devices, NPB and BAlq emissions disappear and 1,4‐bis[2‐(3‐N‐ethylcarbazoryl)vinyl]benzene (BCzVB) emission appears, illustrating the formation of CBP excitons at two EML interfaces in these devices. The reason for this difference was analyzed and it was found that holes in the NPB layer could be made directly into the CBP host in the EML interface of the red‐doped device. In contrast, holes were injected into CBP host via the btp2Ir(acac)/BCzVB dopants in the co‐doped devices, which facilitated hole injection from the NPB layer to the EML, leading to the formation of CBP excitons at two EML interfaces in the co‐doped devices. Therefore, btp2Ir(acac) emission was caused by carrier trapping in the red‐doped device, while, in the co‐doped devices, it resulted from both carrier trapping and energy transfer from the CBP. Furthermore, it was revealed that the carrier trapping mechanism is less efficient than the energy transfer mechanism for btp2Ir(acac) excitation in co‐doped devices. In summary, our results clarified the excitation mechanism of btp2Ir(acac) in the CBP host.  相似文献   

20.
Highly efficient tandem and semitransparent (ST) polymer solar cells utilizing the same donor polymer blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as active layers are demonstrated. A high power conversion efficiency (PCE) of 8.5% and a record high open‐circuit voltage of 1.71 V are achieved for a tandem cell based on a medium bandgap polymer poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐phanQ). In addition, this approach can also be applied to a low bandgap polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT), and PCEs up to 7.9% are achieved. Due to the very thin total active layer thickness, a highly efficient ST tandem cell based on PIDT‐phanQ exhibits a high PCE of 7.4%, which is the highest value reported to date for a ST solar cell. The ST device also possesses a desirable average visible transmittance (≈40%) and an excellent color rendering index (≈100), permitting its use in power‐generating window applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号