首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A power conversion efficiency (PCE) as high as 19.7% is achieved using a novel, low‐cost, dopant‐free hole transport material (HTM) in mixed‐ion solution‐processed perovskite solar cells (PSCs). Following a rational molecular design strategy, arylamine‐substituted copper(II) phthalocyanine (CuPc) derivatives are selected as HTMs, reaching the highest PCE ever reported for PSCs employing dopant‐free HTMs. The intrinsic thermal and chemical properties of dopant‐free CuPcs result in PSCs with a long‐term stability outperforming that of the benchmark doped 2,2′,7,7′‐Tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐Spirobifluorene (Spiro‐OMeTAD)‐based devices. The combination of molecular modeling, synthesis, and full experimental characterization sheds light on the nanostructure and molecular aggregation of arylamine‐substituted CuPc compounds, providing a link between molecular structure and device properties. These results reveal the potential of engineering CuPc derivatives as dopant‐free HTMs to fabricate cost‐effective and highly efficient PSCs with long‐term stability, and pave the way to their commercial‐scale manufacturing. More generally, this case demonstrates how an integrated approach based on rational design and computational modeling can guide and anticipate the synthesis of new classes of materials to achieve specific functions in complex device structures.  相似文献   

2.
To date, the most efficient perovskite solar cells (PSCs) employ an n–i–p device architecture that uses a 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) hole‐transporting material (HTM), which achieves optimum conductivity with the addition of lithium bis(trifluoromethane)sulfonimide (LiTFSI) and air exposure. However, this additive along with its oxidation process leads to poor reproducibility and is detrimental to stability. Herein, a dicationic salt spiro‐OMeTAD(TFSI)2, is employed as an effective p‐dopant to achieve power conversion efficiencies of 19.3% and 18.3% (apertures of 0.16 and 1.00 cm2) with excellent reproducibility in the absence of LiTFSI and air exposure. As far as it is known, these are the highest‐performing n–i–p PSCs without LiTFSI or air exposure. Comprehensive analysis demonstrates that precise control of the proportion of [spiro‐OMeTAD]+ directly provides high conductivity in HTM films with low series resistance, fast hole extraction, and lower interfacial charge recombination. Moreover, the spiro‐OMeTAD(TFSI)2‐doped devices show improved stability, benefitting from well‐retained HTM morphology without forming aggregates or voids when tested under an ambient atmosphere. A facile approach is presented to fabricate highly efficient PSCs by replacing LiTFSI with spiro‐OMeTAD(TFSI)2. Furthermore, this study provides an insight into the relationship between device performance and the HTM doping level.  相似文献   

3.
There has been considerable progress over the last decade in development of the perovskite solar cells (PSCs), with reported performances now surpassing 25.2% power conversion efficiency. Both long‐term stability and component costs of PSCs remain to be addressed by the research community, using hole transporting materials (HTMs) such as 2,2′,7,7′‐tetrakis(N,N′‐di‐pmethoxyphenylamino)‐9,9′‐spirbiuorene(Spiro‐OMeTAD) and poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] (PTAA). HTMs are essential for high‐performance PSC devices. Although effective, these materials require a relatively high degree of doping with additives to improve charge mobility and interlayer/substrate compatibility, introducing doping‐induced stability issues with these HTMs, and further, additional costs and experimental complexity associated with using these doped materials. This article reviews dopant‐free organic HTMs for PSCs, outlining reports of structures with promising properties toward achieving low‐cost, effective, and scalable materials for devices with long‐term stability. It summarizes recent literature reports on non‐doped, alternative, and more stable HTMs used in PSCs as essential components for high‐efficiency cells, categorizing HTMs as reported for different PSC architectures in addition to use of dopant‐free small molecular and polymeric HTMs. Finally, an outlook and critical assessment of dopant‐free organic HTMs toward commercial application and insight into the development of stable PSC devices is provided.  相似文献   

4.
Despite the recent unprecedented development of efficient dopant‐free hole transporting materials (HTMs) for high‐performance perovskite solar cells (PSCs) on small‐area devices (≤0.1 cm2), low‐cost dopant‐free HTMs for large‐area PSCs (≥1 cm2) with high power conversion efficiencies (PCEs) have rarely been reported. Herein, two novel HTMs, 3,3′,6,6′ (or 2,2′,7,7′)‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐N,N′‐bicarbazole (3,6 BCz‐OMeTAD or 2,7 BCz‐OMeTAD), are synthesized via an extremely simple route from very cheap raw materials. Owing to their excellent film‐forming abilities and matching energy levels, 3,6 BCz‐OMeTAD and 2,7 BCz‐OMeTAD can be successfully employed as a perfect ultrathin (≈30 nm) hole transporting layer in large‐area PSCs up to 1 cm2. The 3,6 BCz‐OMeTAD and 2,7 BCz‐OMeTAD based large‐area PSCs show highest PCEs up to 17.0% and 17.6%, respectively. More importantly, high performance large‐area PSCs based on 2,7 BCz‐OMeTAD retain 90% of the initial efficiency after 2000 h storage in an ambient environment without encapsulation.  相似文献   

5.
4‐Tert ‐butylpyridine (t BP) is an important additive in triarylamine‐based organic hole‐transporting materials (HTMs) for improving the efficiency and steady‐state performance of perovskite solar cells (PVSCs). However, the low boiling point of t BP (196 °C) significantly affects the long‐term stability and device performance of PVSCs. Herein, the design and synthesis of a series of covalently linked Spiro[fluorene‐9,9′‐xanthene] (SFX)‐based organic HTMs and pyridine derivatives to realize efficient and stable planar PVSCs are reported. One of the tailored HTMs, N2,N2,N7,N7‐tetrakis(4‐methoxyphenyl)‐3′,6′‐bis(pyridin‐4‐ylmethoxy) spiro[fluorene‐9,9′‐xanthene]‐2,7‐diamine ( XPP ) with two para‐position substituted pyridines that immobilized on the SFX core unit shows a high power conversion efficiency (PCE) of 17.2% in planar CH3NH3PbI3‐based PVSCs under 100 mW cm?2 AM 1.5G solar illumination, which is much higher than the efficiency of 5.5% that using the well‐known 2,2′,7,7′‐tetrakis‐(N ,N ‐di‐p ‐methoxy‐phenyl‐amine)9,9′‐spirobifluorene (Spiro‐OMeTAD) as HTM (without t BP) under the same condition. Most importantly, the pyridine‐functionalized HTM‐based PVSCs without t BP as additive show much better long‐term stability than that of the state‐of‐the‐art HTM Spiro‐OMeTAD‐based solar cells that containing t BP as additive. This is the first case that the t BP‐free HTMs are demonstrated in PVSCs with high PCEs and good stability. It paves the way to develop highly efficient and stable t BP‐free HTMs for PVSCs toward commercial applications.  相似文献   

6.
The development of effective and stable hole transporting materials (HTMs) is very important for achieving high‐performance planar perovskite solar cells (PSCs). Herein, copper salts (cuprous thiocyanate (CuSCN) or cuprous iodide (CuI)) doped 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (spiro‐OMeTAD) based on a solution processing as the HTM in PSCs is demonstrated. The incorporation of CuSCN (or CuI) realizes a p‐type doping with efficient charge transfer complex, which results in improved film conductivity and hole mobility in spiro‐OMeTAD:CuSCN (or CuI) composite films. As a result, the PCE is largely improved from 14.82% to 18.02% due to obvious enhancements in the cell parameters of short‐circuit current density and fill factor. Besides the HTM role, the composite film can suppress the film aggregation and crystallization of spiro‐OMeTAD films with reduced pinholes and voids, which slows down the perovskite decomposition by avoiding the moisture infiltration to some extent. The finding in this work provides a simple method to improve the efficiency and stability of planar perovskite solar cells.  相似文献   

7.
Perovskite solar cells have emerged as a promising technique for low‐cost, light weight, and highly efficient photovoltaics. However, they still largely rely on 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (Spiro‐OMeTAD) to serve as hole‐transporting materials (HTMs). Here, a series of HTMs with small molecular weight is designed, which are constructed on a spiro core involving phenylpyrazole and a second heteroaromatics, i.e., xanthene (O atom), thioxanthene (S atom), and acridine (N atom). Through varying from phenylpyrazole substituted xanthene ( PPyra‐XA ), thioxanthene ( PPyra‐TXA ), to acridine ( PPyra‐ACD ), their optical and electrochemical properties, hole mobilities, and the photovoltaic performance are optimized. As a consequence, PPyra‐TXA based device exhibits the highest power conversion efficiency (PCE) of 18.06%, outperforming that of Spiro‐OMeTAD (16.15%), which could be attributed to the enhancement of hole mobility exerted by the thioxanthene. In addition, the dopant‐free device shows PCE of 11.7%. These results open a new direction for designing spiro‐HTMs by simple modification of chemical structures.  相似文献   

8.
Solution‐processed few‐layer MoS2 flakes are exploited as an active buffer layer in hybrid lead–halide perovskite solar cells (PSCs). Glass/FTO/compact‐TiO2/mesoporous‐TiO2/CH3NH3PbI3/MoS2/Spiro‐OMeTAD/Au solar cells are realized with the MoS2 flakes having a twofold function, acting both as a protective layer, by preventing the formation of shunt contacts between the perovskite and the Au electrode, and as a hole transport layer from the perovskite to the Spiro‐OMeTAD. As prepared PSC demonstrates a power conversion efficiency (η) of 13.3%, along with a higher lifetime stability over 550 h with respect to reference PSC without MoS2η/η = ?7% vs. Δη/η = ?34%). Large‐area PSCs (1.05 cm2 active area) are also fabricated to demonstrate the scalability of this approach, achieving η of 11.5%. Our results pave the way toward the implementation of MoS2 as a material able to boost the shelf life of large‐area perovskite solar cells in view of their commercialization.  相似文献   

9.
Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole‐transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low‐cost and excellent stability. However, the most efficient PSCs using CuPc‐based HTMs reported thus far still rely on hygroscopic p‐type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc‐Bu and CuPc‐OBu, by molecular engineering of the non‐peripheral substituents of the Pc rings, and applied as dopant‐free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant‐free CuPc‐OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc‐Bu (14.3%). Moreover, PSCs containing dopant‐free CuPc‐OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro‐OMeTAD. This work thus provides a fundamental strategy for the future design of cost‐effective and stable HTMs for PSCs and other optoelectronic devices.  相似文献   

10.
Inverted perovskite solar cells (PSCs) with low‐temperature processed hole transporting materials (HTMs) suffer from poor performance due to the inferior hole‐extraction capability at the HTM/perovskite interfaces. Here, molecules with controlled electron affinity enable a HTM with conductivity improved by more than ten times and a decreased energy gap between the Fermi level and the valence band from 0.60 to 0.24 eV, leading to the enhancement of hole‐extraction capacity by five times. As a result, the 3,6‐difluoro‐2,5,7,7,8,8‐hexacyanoquinodimethane molecules are used for the first time enhancing open‐circuit voltage (Voc) and fill factor (FF) of the PSCs, which enable rigid‐and flexible‐based inverted perovskite devices achieving highest power conversion efficiencies of 22.13% and 20.01%, respectively. This new method significantly enhances the Voc and FF of the PSCs, which can be widely combined with HTMs based on not only NiOx but also PTAA, PEDOTT:PSS, and CuSCN, providing a new way of realizing efficient inverted PSCs.  相似文献   

11.
Although perovskite solar cells (PVSCs) have achieved rapid progress in the past few years, most of the high‐performance device results are based on the doped small molecule hole‐transporting material (HTM), spiro‐OMeTAD, which affects their long‐term stability. In addition, some defects from under‐coordinated Pb atoms on the surface of perovskite films can also result in nonradiative recombination to affect device performance. To alleviate these problems, a dopant‐free HTM based on a donor‐acceptor polymer, PBT1‐C, synthesized from the copolymerization between the benzodithiophene and 1,3‐bis(4‐(2‐ethylhexyl)thiophen‐2‐yl)‐5,7‐bis(2‐alkyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione units is introduced. PBT1‐C not only possesses excellent hole mobility, but is also able to passivate the surface traps of the perovskite films. The derived PVSC shows a high power conversion efficiency of 19.06% with a very high fill factor of 81.22%, which is the highest reported for dopant‐free polymeric HTMs. The results from photoluminescence and trap density of states measurements validate that PBT1‐C can effectively passivate both surface and grain boundary traps of the perovskite.  相似文献   

12.
Tremendous progress has recently been achieved in the field of perovskite solar cells (PSCs) as evidenced by impressive power conversion efficiencies (PCEs); but the high PCEs of >20% in PSCs has so far been mostly achieved by using the hole transport material (HTM) spiro‐OMeTAD; however, the relatively low conductivity and high cost of spiro‐OMeTAD significantly limit its potential use in large‐scale applications. In this work, two new organic molecules with spiro[fluorene‐9,9′‐xanthene] (SFX)‐based pendant groups, X26 and X36, have been developed as HTMs. Both X26 and X36 present facile syntheses with high yields. It is found that the introduced SFX pendant groups in triphenylamine‐based molecules show significant influence on the conductivity, energy levels, and thin‐film surface morphology. The use of X26 as HTM in PSCs yields a remarkable PCE of 20.2%. In addition, the X26‐based devices show impressive stability maintaining a high PCE of 18.8% after 5 months of aging in controlled (20%) humidity in the dark. We believe that X26 with high device PCEs of >20% and simple synthesis show a great promise for future application in PSCs, and that it represents a useful design platform for designing new charge transport materials for optoelectronic applications.  相似文献   

13.
A series of triphenylamine‐based small molecule organic hole transport materials (HTMs) with low crystallinity and high hole mobility are systematically investigated in solid‐state dye‐sensitized solar cells (ssDSCs). By using the organic dye LEG4 as a photosensitizer, devices with X3 and X35 as the HTMs exhibit desirable power conversion efficiencies (PCEs) of 5.8% and 5.5%, respectively. These values are slightly higher than the PCE of 5.4% obtained by using the state‐of‐the‐art HTM Spiro‐OMeTAD. Meanwhile, transient photovoltage decay measurement is used to gain insight into the complex influences of the HTMs on the performance of devices. The results demonstrate that smaller HTMs induce faster electron recombination in the devices and suggest that the size of a HTM plays a crucial role in device performance, which is reported for the first time.  相似文献   

14.
In this paper, two novel D‐π‐D hole‐transporting materials (HTM) are reported, abbreviated as BDT‐PTZ and BDT‐POZ , which consist of 4,8‐di(hexylthio)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDT) as π‐conjugated linker, and N‐(6‐bromohexyl) phenothiazine (PTZ)/N‐(6‐bromohexyl) phenoxazine (POZ) as donor units. The above two HTMs are deployed in p‐i‐n perovskite solar cells (PSCs) as dopant‐free HT layers, exhibiting excellent power conversion efficiencies of 18.26% and 19.16%, respectively. Particularly, BDT‐POZ demonstrates a superior fill factor of 81.7%, which is consistent with its more efficient hole extraction and transport verified via steady‐state/transient fluorescence spectra and space‐charge‐limited current technique. Single‐crystal X‐ray diffraction characterization implies these two molecules present diverse packing tendencies, which may account for various interfacial hole‐transport ability in PSCs.  相似文献   

15.
The main handicap still hindering the eventual exploitation of organometal halide perovskite‐based solar cells is their poor stability under prolonged illumination, ambient conditions, and increased temperatures. This article shows for the first time the vacuum processing of the most widely used solid‐state hole conductor (SSHC), i.e., the Spiro‐OMeTAD [2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenyl‐amine) 9,9′‐spirobifluorene], and how its dopant‐free crystalline formation unprecedently improves perovskite solar cell (PSC) stability under continuous illumination by about two orders of magnitude with respect to the solution‐processed reference and after annealing in air up to 200 °C. It is demonstrated that the control over the temperature of the samples during the vacuum deposition enhances the crystallinity of the SSHC, obtaining a preferential orientation along the π–π stacking direction. These results may represent a milestone toward the full vacuum processing of hybrid organic halide PSCs as well as light‐emitting diodes, with promising impacts on the development of durable devices. The microstructure, purity, and crystallinity of the vacuum sublimated Spiro‐OMeTAD layers are fully elucidated by applying an unparalleled set of complementary characterization techniques, including scanning electron microscopy, X‐ray diffraction, grazing‐incidence small‐angle X‐ray scattering and grazing‐incidence wide‐angle X‐ray scattering, X‐ray photoelectron spectroscopy, and Rutherford backscattering spectroscopy.  相似文献   

16.
Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic double layer based on tungsten oxide (WO3) and spiro‐OMeTAD is reported as a hole transport layer in PSCs. The device equipped with a WO3/spiro‐OMeTAD layer achieves the highest efficiency (21.44%) in the tin (IV) oxide planar structure. The electronic properties of the double layer are thoroughly analyzed using photoluminescence, space‐charge–limited current, and electrochemical impedance spectroscopy. The WO3/spiro‐OMeTAD layer exhibits better hole extraction ability and faster hole mobility. The WO3 layer particularly improves the open‐circuit voltage (VOC) by lowering the quasi‐Fermi energy level for holes and reducing charge recombination, resulting in high VOC (1.17 V in the champion cell). In addition, the WO3 layer as a scaffold layer promotes the formation of a uniform and pinhole‐free spiro‐OMeTAD overlayer in the WO3/spiro‐OMeTAD layer. High stability under thermal and humid conditions stems from this property. The study presents a facile approach for improving the efficiency and stability of PSCs by stacking an organic layer on an inorganic layer.  相似文献   

17.
Perovskite solar cells have delivered power conversion efficiency beyond 22% in less than seven years, implying the potential for the paradigm shift of low‐cost photovoltaics with high efficiency and low embedded energy. Besides the “perovskite fever,” the development of new hole transport materials (HTM), especially dopant‐free HTMs, is another research hotspot. This is because the currently used HTMs, such as spiro‐OMeTAD derivatives, require additional chemical doping process to ensure sufficient conductivity and proper ionic potential level for efficient hole transport and collection. However, the commonly used dopants are volatile and hygroscopic which not only increase the complexity and cost of device fabrication but also deteriorate the device stability. So far, there have been several reviews on new HTMs, but review or analysis on dopant‐free HTMs is scarce. In this review, all reported dopant‐free HTMs are categorized into four primary different types and lessons will be learned during the separate discussions. The stability test behavior of all the intrinsic HTMs will be evaluated directly. In the end, the correlations between the properties of the intrinsic HTMs and parameters of the devices will be plotted to shed light on the future direction of development of this field.  相似文献   

18.
Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance of f‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ) f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, the f‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, the f‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.  相似文献   

19.
The synthesis and characterization of two related families of star‐shaped thiophene‐containing hole‐transporting materials (HTMs) based on fused tetrathienoanthracene and nonfused tetrathienylbenzene cores are reported. All of them are endowed with four terminal (4,4′‐dimethoxy)diphenylamino groups that are either linked directly to the core or showed a different type of bridges (i.e., thiophene‐phenyl or phenyl rings). The novel HTMs are tested in mixed‐ion perovskite (Cs0.1FA0.74MA0.13PbI2.48Br0.39) solar cells, and power conversion efficiencies of up to 18.8% are measured under 1 sun irradiation, comparable with the efficiency obtained for the reference cell using 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene as an HTM.  相似文献   

20.
Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号