共查询到20条相似文献,搜索用时 15 毫秒
2.
Liumin Suo Oleg Borodin Yuesheng Wang Xiaohui Rong Wei Sun Xiiulin Fan Shuyin Xu Marshall A. Schroeder Arthur V. Cresce Fei Wang Chongyin Yang Yong‐Sheng Hu Kang Xu Chunsheng Wang 《Liver Transplantation》2017,7(21)
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin. 相似文献
3.
《Liver Transplantation》2018,8(2)
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries. 相似文献
4.
Limin Zhou Kai Zhang Zhe Hu Zhanliang Tao Liqiang Mai Yong‐Mook Kang Shu‐Lei Chou Jun Chen 《Liver Transplantation》2018,8(6)
Since their successful commercialization in 1990s, lithium‐ion batteries (LIBs) have been widely applied in portable digital products. The energy density and power density of LIBs are inadequate, however, to satisfy the continuous growth in demand. Considering the cost distribution in battery system, it is essential to explore cathode/anode materials with excellent rate capability and long cycle life. Nanometer‐sized electrode materials could quickly take up and store numerous Li+ ions, afforded by short diffusion channels and large surface area. Unfortunately, low thermodynamic stability of nanoparticles results in electrochemical agglomeration and raises the risk of side reactions on electrolyte. Thus, micro/nano and hetero/hierarchical structures, characterized by ordered assembly of different sizes, phases, and/or pores, have been developed, which enable us to effectively improve the utilization, reaction kinetics, and structural stability of electrode materials. This review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail. Multidimensional self‐assembled structures can achieve integration of the advantages of materials with different sizes. Core/yolk–shell structures provide synergistic effects between the shell and the core/yolk. Porous structures with macro‐, meso‐, and micropores can accommodate volume expansion and facilitate electrolyte infiltration. 相似文献
5.
Ziyi Cao Peiyuan Zhuang Xiang Zhang Mingxin Ye Jianfeng Shen Pulickel M. Ajayan 《Liver Transplantation》2020,10(30)
Ongoing interest is focused on aqueous zinc ion batteries (ZIBs) for mass‐production energy storage systems as a result of their affordability, safety, and high energy density. Ensuring the stability of the electrode/electrolyte interface is of particular importance for prolonging the cycling ability to meet the practical requirements of rechargeable batteries. Zinc anodes exhibit poor cycle life and low coulombic efficiency, stemming from the severe dendrite growth, and irreversible byproducts such as H2 and inactive ZnO. Great efforts have recently been devoted to zinc anode protection for designing high‐performance ZIBs. However, the intrinsic origins of zinc plating/striping are poorly understood, which greatly delay its potential applications. Rather than focusing on battery metrics, this review delves deeply into the underlying science that triggers the deposition/dissolution of zinc ions. Furthermore, recent advances in modulating the zinc coordination environment, uniforming interfacial electric fields, and inducing zinc deposition are highlighted and summarized. Finally, perspectives and suggestions are provided for designing highly stable zinc anodes for the industrialization of the aqueous rechargeable ZIBs in the near future. 相似文献
6.
Jingyang Wang Yan Wang Dong‐Hwa Seo Tan Shi Shouping Chen Yaosen Tian Haegyeom Kim Gerbrand Ceder 《Liver Transplantation》2020,10(10)
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge. 相似文献
7.
Zhen Wang;Yixing Fang;Jie Shi;Zhihui Ma;Xuanhui Qu;Ping Li; 《Liver Transplantation》2024,14(19):2303739
The reaction chemistry and degradation mechanism of MnO2-based cathodes remain controversial, which hinder their applications in energy storage. Herein, a conversion reaction between Zn4SO4·(OH)6·nH2O (ZSH) and ZnxMnO(OH)2 (ZMO) is proposed in ZnSO4-based electrolytes. The conversion reaction is an important component of the reaction chemistry as well as the Zn2+/H+ intercalation/deintercalation reaction, which not only provides electrochemical capacity but also dominates the degradation of MnO2 cathodes. The massive accumulation of inactive ZMO seriously destroying the dynamic performance of MnO2 cathodes is deemed to be a principal trigger of the degradation mechanism. Intriguingly, the conversion reaction is sensitive to voltage, which can be activated by voltage modulation. Active ZMO generated in the activated conversion reaction is endowed with higher reversibility and electrooxidation, avoiding the accumulation of inactive ZMO and the decline of kinetic performance, which are evidenced by MnO2 and ZSH cathodes. Accordingly, superior cycling stability with a capacity retention of 89.1% after 2000 cycles is achieved at 2 A g−1 for the MnO2 cathode equipped with the activated conversion reaction. Impressively, the conversion reaction activated by voltage modulation is applicable to various crystal forms of MnO2 (α-, β-, γ-, δ-), which is significant for the ZIBs with a long lifespan. 相似文献
8.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application. 相似文献
9.
Xun Guo Guozhao Fang Wenyu Zhang Jiang Zhou Lutong Shan Liangbing Wang Chao Wang Tianquan Lin Yan Tang Shuquan Liang 《Liver Transplantation》2018,8(27)
Rechargeable aqueous zinc‐ion batteries (ZIBs) with high safety and low‐cost are highly desirable for grid‐scale energy storage, yet the energy storage mechanisms in the current cathode materials are still complicated and unclear. Hence, several sodium vanadates with NaV3O8‐type layered structure (e.g., Na5V12O32 and HNaV6O16·4H2O) and β‐Na0.33V2O5‐type tunneled structure (e.g., Na0.76V6O15) are constructed and the storage/release behaviors of Zn2+ ions are deeply investigated in these two typical structures. It should be mentioned that the 2D layered Na5V12O32 and HNaV6O16·4H2O with more effective path for Zn2+ diffusion exhibit higher ion diffusion coefficients than that of tunneled Na0.76V6O15. As a result, Na5V12O32 delivers higher capacity than that of Na0.76V6O15, and a long‐term cyclic performance up to 2000 cycles at 4.0 A g?1 in spite of its capacity fading. This work provides a new perspective of Zn2+ storage mechanism in aqueous ZIB systems. 相似文献
10.
The ever‐increasing demand for high‐performing, economical, and safe power storage for portable electronics and electric vehicles stimulates R&D in the field of chemical power sources. In the past two decades, lithium‐ion technology has proven itself a most robust technology, which delivers high energy and power capabilities. At the same time, current technology requires that the energy and power capabilities of Li‐ion batteries be ‘beefed up’ beyond the existing state of the art. Increasing the battery voltage is one of the ways to improve battery energy density; in Li‐ion cells, the objective of current research is to develop a 5‐volt cell, and at the same time to maintain high specific charge capacity, excellent cycling, and safety. Since current anode materials possess working potentials fairly close to the potential of a lithium metal, the focus is on the development of cathode materials. This work reviews and analyzes the current state of the art, achievements, and challenges in the field of high‐voltage cathode materials for Li‐ion cells. Some suggestions regarding possible approaches for future development in the field are also presented. 相似文献
11.
Qiao Huang Kostiantyn Turcheniuk Xiaolei Ren Alexandre Magasinski Daniel Gordon Nasr Bensalah Gleb Yushin 《Liver Transplantation》2019,9(17)
As an alternative to commercial Ni‐ and Co‐based intercalation‐type cathode materials, conversion‐type metal fluoride (MFx) cathodes are attracting more interest due to their promises to increase cell‐level energy density when coupled with lithium (Li) or silicon (Si)‐based anodes. Among metal fluorides, iron fluorides (FeF2 and FeF3) are regarded as some of the most promising candidates due to their high capacity, moderately high potential and the very low cost of Fe. In this study, the impacts of electrolyte composition on the performance and stability of nanostructured FeF2 cathodes are systematically investigated. Dramatic impacts of Li salt composition, Li salt concentration, solvent composition, and cycling potential range on the cathode's most critical performance parameters—stability, capacity, rate, and voltage hysteresis are discovered. In contrast to previous beliefs, it is observed that even if the Fe2+ cation dissolution could be avoided, the dissolution of F? anions may still negatively affect cathode performance. Formation of the more favorable cathode solid electrolyte interface (CEI) is found to minimize both processes. 相似文献
12.
Design and Performance of Rechargeable Sodium Ion Batteries,and Symmetrical Li‐Ion Batteries with Supercapacitor‐Like Power Density Based upon Polyoxovanadates
下载免费PDF全文

Jia‐Jia Chen Jian‐Chuan Ye Xia‐Guang Zhang Mark D. Symes Shao‐Cong Fan De‐Liang Long Ming‐Sen Zheng De‐Yin Wu Leroy Cronin Quan‐Feng Dong 《Liver Transplantation》2018,8(6)
The polyanion Li7V15O36(CO3) is a nanosized molecular cluster (≈1 nm in size), that has the potential to form an open host framework with a higher surface‐to‐bulk ratio than conventional transition metal oxide electrode materials. Herein, practical rechargeable Na‐ion batteries and symmetric Li‐ion batteries are demonstrated based on the polyoxovanadate Li7V15O36(CO3). The vanadium centers in {V15O36(CO3)} do not all have the same VIV/V redox potentials, which permits symmetric devices to be created from this material that exhibit battery‐like energy density and supercapacitor‐like power density. An ultrahigh specific power of 51.5 kW kg?1 at 100 A g?1 and a specific energy of 125 W h kg?1 can be achieved, along with a long cycling life (>500 cycles). Moreover, electrochemical and theoretical studies reveal that {V15O36(CO3)} also allows the transport of large cations, like Na+, and that it can serve as the cathode material for rechargeable Na‐ion batteries with a high specific capacity of 240 mA h g?1 and a specific energy of 390 W h kg?1 for the full Na‐ion battery. Finally, the polyoxometalate material from these electrochemical energy storage devices can be easily extracted from spent electrodes by simple treatment with water, providing a potential route to recycling of the redox active material. 相似文献
13.
Yong‐Ning Zhou Ji‐Li Yue Enyuan Hu Hong Li Lin Gu Kyung‐Wan Nam Seong‐Min Bak Xiqian Yu Jue Liu Jianming Bai Eric Dooryhee Zheng‐Wen Fu Xiao‐Qing Yang 《Liver Transplantation》2016,6(21)
Using fast time‐resolved in situ X‐ray diffraction, charge‐rate dependent phase transition processes of layer structured cathode material LiNi1/3Mn1/3Co1/3O2 for lithium‐ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half‐way charging at high rate, sample studied by scanning transmission electron microscopy shows Li‐rich and Li‐poor phases' coexistence with tetrahedral occupation of Li in Li‐poor phase. The high rate induced overpotential is thought to be the driving force for the formation of this intermediate Li‐poor phase. The in situ quick X‐ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni4+ state can be reached at the end of charge with 30C rate. These results give new insights in the understanding of the layered cathodes during high‐rate charging. 相似文献
14.
Guochun Yan Kyle Reeves Dominique Foix Zhujie Li Claudio Cometto Sathiya Mariyappan Mathieu Salanne Jean‐Marie Tarascon 《Liver Transplantation》2019,9(41)
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry. 相似文献
15.
16.
Supercapacitors: Design and Performance of Rechargeable Sodium Ion Batteries,and Symmetrical Li‐Ion Batteries with Supercapacitor‐Like Power Density Based upon Polyoxovanadates (Adv. Energy Mater. 6/2018)
下载免费PDF全文

Jia‐Jia Chen Jian‐Chuan Ye Xia‐Guang Zhang Mark D. Symes Shao‐Cong Fan De‐Liang Long Ming‐Sen Zheng De‐Yin Wu Leroy Cronin Quan‐Feng Dong 《Liver Transplantation》2018,8(6)
17.
Covalent–organic frameworks (COFs), featuring structural diversity, framework tunability and functional versatility, have emerged as promising organic electrode materials for rechargeable batteries and garnered tremendous attention in recent years. The adjustable pore configuration, coupled with the functionalization of frameworks through pre‐ and post‐synthesis strategies, enables a precise customization of COFs, which provides a novel perspective to deepen the understanding of the fundamental problems of organic electrode materials. In this review, a summary of the recent research into COFs electrode materials for rechargeable batteries including lithium‐ion batteries, sodium‐ion batteries, potassium‐ion batteries, and aqueous zinc batteries is provided. In addition, this review will also cover the working principles, advantages and challenges, strategies to improve electrochemical performance, and applications of COFs in rechargeable batteries. 相似文献
18.
Qiang Pang Congli Sun Yanhao Yu Kangning Zhao Ziyi Zhang Paul M. Voyles Gang Chen Yingjin Wei Xudong Wang 《Liver Transplantation》2018,8(19)
Aqueous rechargeable zinc ion batteries are considered a promising candidate for large‐scale energy storage owing to their low cost and high safety nature. A composite material comprised of H2V3O8 nanowires (NWs) wrapped by graphene sheets and used as the cathode material for aqueous rechargeable zinc ion batteries is developed. Owing to the synergistic merits of desirable structural features of H2V3O8 NWs and high conductivity of the graphene network, the H2V3O8 NW/graphene composite exhibits superior zinc ion storage performance including high capacity of 394 mA h g?1 at 1/3 C, high rate capability of 270 mA h g?1 at 20 C and excellent cycling stability of up to 2000 cycles with a capacity retention of 87%. The battery offers a high energy density of 168 W h kg?1 at 1/3 C and a high power density of 2215 W kg?1 at 20 C (calculated based on the total weight of H2V3O8 NW/graphene composite and the theoretically required amount of Zn). Systematic structural and elemental characterization confirm the reversible Zn2+ and water cointercalation electrochemical reaction mechanism. This work brings a new prospect of designing high‐performance aqueous rechargeable zinc ion batteries for grid‐scale energy storage. 相似文献
19.
Jung‐Gu Han Chihyun Hwang Su Hwan Kim Chanhyun Park Jonghak Kim Gwan Yeong Jung Kyungeun Baek Sujong Chae Seok Ju Kang Jaephil Cho Sang Kyu Kwak Hyun‐Kon Song Nam‐Soon Choi 《Liver Transplantation》2020,10(20)
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs. 相似文献