首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomically thin 2D heterostructures have opened new realms in electronic and optoelectronic devices. Herein, 2D lateral heterostructures of mesoporous In2O3–x/In2S3 atomic layers are synthesized through the in situ oxidation of In2S3 atomic layers by an oxygen plasma‐induced strategy. Based on experimental observations and theoretical calculations, the prolonged charge carrier lifetime and increased electron density reveal the efficient photoexcited carrier transport and separation in the In2O3–x/In2S3 layers by interfacial bonding at the atomic level. As expected, the synergistic structural and electronic modulations of the In2O3–x/In2S3 layers generate a photocurrent of 1.28 mA cm?2 at 1.23 V versus a reversible hydrogen electrode, nearly 21 and 79 times higher than those of the In2S3 atomic layers and bulk counterpart, respectively. Due to the large surface area, abundant active sites, broadband‐light harvesting ability, and effective charge transport pathways, the In2O3–x/In2S3 layers build efficient pathways for photoexcited charge in the 2D semiconductive channels, expediting charge transport and kinetic processes and enhancing the robust broadband‐light photo‐electrochemical water splitting performance. This work paves new avenues for the exploration and design of atomically thin 2D lateral heterostructures toward robust photo‐electrochemical applications and solar energy utilization.  相似文献   

2.
3.
Control over the topography of semiconducting materials can lead to enhanced performances in photoelectrochemical related applications. One means of implementing this is through direct patterning of metal‐based substrates, though this is inadequately developed. Conventional techniques for patterned fabrication commonly involve technologically demanding and tedious processes. 3D printing, a form of additive fabrication, enables creation of a 3D object by deposition of successive layers of material via computer control. In this work, the feasibility of fabricating metal‐based 3D printed photoelectrodes is explored. Electrodes comprised of conical arrays are fabricated and the performance for photoelectrochemical water splitting is further enhanced by the direct growth of TiO2 nanotubes on this platform. 3D metal printing provides a flexible and versatile approach for the design and fabrication of novel electrode structures.  相似文献   

4.
5.
6.
The photo‐electrochemical performance of the Si photocathode is seriously restricted by the severe charge recombination at the Si/electrolyte interface and sluggish hydrogen evolution reaction (HER) kinetics. Herein, a facile hydrothermal process is reported to integrate Ni/Fe codoped In2S3 nanosheet arrays onto the surface of unmodified a p‐Si photocathode for water reduction. The experimental results and density functional theory calculations indicate that the Ni and Fe codoping of In2S3 contributes to small surface transfer impedance, prolonged carrier lifetime, increased charge carrier concentration, and reduced overpotential for HER. Moreover, a p–n junction formed at the interface of Si and Ni/Fe:In2S3 promotes the photogenerated electron–hole separation and reduces the recombination in the bulk. As a result, the Si–Ni/Fe:In2S3 photocathode exhibits high performance with significantly enhanced photocurrent of ?80.9 mA cm?2 at ?1.3 VRHE and positive onset potential of 0.44 VRHE.  相似文献   

7.
8.
Understanding the degradation mechanisms of photoelectrodes and improving their stability are essential for fully realizing solar‐to‐hydrogen conversion via photo‐electrochemical (PEC) devices. Although amorphous TiO2 layers have been widely employed as a protective layer on top of p‐type semiconductors to implement durable photocathodes, gradual photocurrent degradation is still unavoidable. This study elucidates the photocurrent degradation mechanisms of TiO2‐protected Sb2Se3 photocathodes and proposes a novel interface‐modification methodology in which fullerene (C60) is introduced as a photoelectron transfer promoter for significantly enhancing long‐term stability. It is demonstrated that the accumulation of photogenerated electrons at the surface of the TiO2 layer induces the reductive dissolution of TiO2, accompanied by photocurrent degradation. In addition, the insertion of the C60 photoelectron transfer promoter at the Pt/TiO2 interface facilitates the rapid transfer of photogenerated electrons out of the TiO2 layer, thereby yielding enhanced stability. The Pt/C60/TiO2/Sb2Se3 device exhibits a high photocurrent density of 17 mA cm?2 and outstanding stability over 10 h of operation, representing the best PEC performance and long‐term stability compared with previously reported Sb2Se3‐based photocathodes. This research not only provides in‐depth understanding of the degradation mechanisms of TiO2‐protected photocathodes, but also suggests a new direction to achieve durable photocathodes for photo‐electrochemical water splitting.  相似文献   

9.
Photocatalysis is the most promising method for achieving artificial photosynthesis, but a bottleneck is encountered in finding materials that could efficiently promote the water splitting reaction. The nontoxicity, low cost, and versatility of photocatalysts make them especially attractive for this application. This study demonstrates that small amounts of α‐Fe2O3 nanosheets can actively promote exfoliation of g‐C3N4, producing 2D hybrid that exhibits tight interfaces and an all‐solid‐state Z‐scheme junction. These nanostructured hybrids present a high H2 evolution rate >3 × 104 µmol g‐1 h‐1 and external quantum efficiency of 44.35% at λ = 420 nm, the highest value so far reported among the family of g‐C3N4 photocatalysts. Besides effectively suppressing the recombination of electron–hole pairs, this Z‐scheme junction also exhibits activity toward overall water splitting without any sacrificial donor. The proposed synthetic route for controlled production of 2D g‐C3N4‐based structures provides a scalable alternative toward the development of highly efficient and active photocatalysts.  相似文献   

10.
11.
Recently, defect engineering has been used to intruduce half‐metallicity into selected semiconductors, thereby significantly enhancing their electrical conductivity and catalytic/electrocatalytic performance. Taking inspiration from this, we developed a novel bifunctional electrode consisting of two monolayer thick manganese dioxide (δ‐MnO2) nanosheet arrays on a nickel foam, using a novel in‐situ method. The bifunctional electrode exposes numerous active sites for electrocatalytic rections and displays excellent electrical conductivity, resulting in strong performance for both HER and OER. Based on detailed structure analysis and density functional theory (DFT) calculations, the remarkably OER and HER activity of the bifunctional electrode can be attributed to the ultrathin δ‐MnO2 nanosheets containing abundant oxygen vacancies lead to the formation od Mn3+ active sites, which give rise to half‐metallicity properties and strong H2O adsorption. This synthetic strategy introduced here represents a new method for the development of non‐precious metal Mn‐based electrocatalysts for eddicient energy conversion.  相似文献   

12.
13.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   

14.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

15.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

16.
To achieve the energy‐effective ammonia (NH3) production via the ambient‐condition electrochemical N2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen‐vacancy‐rich TiO2 nanoparticles (NPs) in situ grown on the Ti3C2Tx nanosheets (TiO2/Ti3C2Tx) are prepared via a one‐step ethanol‐thermal treatment of the Ti3C2Tx MXene. The oxygen vacancies act as the main active sites for the NH3 synthesis. The highly conductive interior untreated Ti3C2Tx nanosheets could not only facilitate the electron transport but also avoid the self‐aggregation of the TiO2 NPs. Meanwhile, the TiO2 NPs generation could enhance the SSA of the Ti3C2Tx in return. Accordingly, the as‐prepared electrocatalyst exhibits an NH3 yield of 32.17 µg h?1 mg?1cat. at ?0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at ?0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO2 (101)/Ti3C2Tx compared with Ti3C2Tx or TiO2 (101) alone.  相似文献   

17.
18.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

19.
20.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号