首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

2.
Sodium‐ion capacitors (SICs) are emerging energy storage devices with high energy, high power, and durable life. Sn is a promising anode material for lithium storage, but the poor conductivity of the a‐NaSn phase upon sodaition hinders its implementation in SICs. Herein, a superior Sn‐based anode material consisting of plum pudding‐like Co2P/Sn yolk encapsulated with nitrogen‐doped carbon nanobox (Co2P/Sn@NC) for high‐performance SICs is reported. The 8–10 nm metallic nanoparticles produced in situ are uniformly dispersed in the amorphous Sn matrix serving as conductive fillers to facilitate electron transfer in spite of the formation of electrically resistive a‐NaSn phase during cycling. Meanwhile, the carbon shell buffers the large expansion of active Sn and provides a stable electrode–electrolyte interface. Owing to these merits, the yolk–shell Co2P/Sn@NC demonstrates a large capacity of 394 mA h g?1 at 100 mA g?1, high rate capability of 168 mA h g?1 at 5000 mA g?1, and excellent cyclability with 87% capacity retention after 10 000 cycles. By integrating the Co2P/Sn@NC anode with a peanut shell‐derived carbon cathode in the SIC, high energy densities of 112.3 and 43.7 Wh kg?1 at power densities of 100 and 10 000 W kg?1 are achieved.  相似文献   

3.
Yolk‐like TiO2 are prepared through an asymmetric Ostwald ripening, which is simultaneously doped by nitrogen and wrapped by carbon from core to shell. It presents a high specific surface area (144.9 m2 g?1), well‐defined yolk‐like structure (600–700 nm), covered with interweaved nanosheets (3–5 nm) and tailored porosity (5–10 nm) configuration. When first utilized as anode material for sodium‐ion batteries (SIBs), it delivers a high reversible specific capacity of 242.7 mA h g?1 at 0.5 C and maintains a considerable capacity of 115.9 mA h g?1 especially at rate 20 C. Moreover, the reversible capacity can still reach 200.7 mA h g?1 after 550 cycles with full capacity retention at 1 C. Even cycled at extremely high rate 25 C, the capacity retention of 95.5% after 3000 cycles is acquired. Notably, an ultrahigh initial coulombic efficiency of 59.1% is achieved. The incorporation of nitrogen with narrowing the band gap accompanied with carbon uniformly coating from core to shell make the NC TiO2‐Y favor a bulk type conductor, resulting in fast electron transfer, which is beneficial to long‐term cycling stability and remarkable rate capability. It is of great significance to improve the energy‐storage properties through development of the bulk type conductor as anode materials in SIBs.  相似文献   

4.
Smart hybridization of active materials into tailored electrode structure is highly important for developing advanced electrochemical energy storage devices. With the help of sandwiched design, herein a powerful strategy is developed to fabricate three‐layer sandwiched composite core/shell arrays via combined hydrothermal and polymerization approaches. In such a unique architecture, wrinkled MoSe2 nanosheets are sandwiched by vertical graphene (VG) core and N‐doped carbon (N‐C) shell forming sandwiched core/shell arrays. Interesting advantages including high electrical conductivity, strong mechanical stability, and large porosity are combined in the self‐supported VG/MoSe2/N‐C sandwiched arrays. As a preliminary test, the sodium ion storage properties of VG/MoSe2/N‐C sandwiched arrays are characterized and demonstrated with high capacity (540 mA h g?1), enhanced high rate capability, and long‐term cycling stability (298 mA h g?1 at 2.0 A g?1 after 1000 cycles). The sandwiched core/shell structure plays positive roles in the enhancement of electrochemical performances due to dual conductive carbon networks, good volume accommodation, and highly porous structure with fast ion diffusion. The directional electrode design protocol provides a general method for synthesis of high‐performance ternary core/shell electrodes.  相似文献   

5.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

6.
Rational design and preparation of SnO2‐based materials with superior electrochemical performance for lithium‐ion batteries are highly desirable. In this work, the synthesis of SnO2/nitrogen‐doped carbon (SnO2/NC) submicroboxes with excellent lithium storage properties is reported. The as‐synthesized SnO2/NC submicroboxes are highly porous with a high specific surface area of 125 m2 g?1, well‐defined hollow structure (around 400 nm in size) with a shell thickness of 40 nm, and ultrasmall SnO2 nanoparticles uniformly coated with nitrogen‐doped carbon layer. As a result, the SnO2/NC submicroboxes show outstanding electrochemical performance as an anode material for lithium‐ion batteries. A high reversible capacity of 491 mAh g?1 can be retained after 100 cycles at a current density of 0.5 A g?1.  相似文献   

7.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   

8.
NaVPO4F has received a great deal of attention as cathode material for Na‐ion batteries due to its high theoretical capacity (143 mA h g?1), high voltage platform, and structural stability. Novel NaVPO4F/C nanofibers are successfully prepared via a feasible electrospinning method and subsequent heat treatment as self‐standing cathode for Na‐ion batteries. Based on the morphological and microstructural characterization, it can be seen that the NaVPO4F/C nanofibers are smooth and continuous with NaVPO4F nanoparticles (≈6 nm) embedded in porous carbon matrix. For Na‐storage, this electrode exhibits extraordinary electrochemical performance: a high capacity (126.3 mA h g?1 at 1 C), a superior rate capability (61.2 mA h g?1 at 50 C), and ultralong cyclability (96.5% capacity retention after 1000 cycles at 2 C). 1D NaVPO4F/C nanofibers that interlink into 3D conductive network improve the conductivity of NaVPO4F, and effectively restrain the aggregation of NaVPO4F particles during charge/discharge process, leading to the high performance.  相似文献   

9.
Different from previously reported mechanical alloying route to synthesize Sn x P3, novel Sn4P3/reduced graphene oxide (RGO) hybrids are synthesized for the first time through an in situ low‐temperature solution‐based phosphorization reaction route from Sn/RGO. Sn4P3 nanoparticles combining with advantages of high conductivity of Sn and high capacity of P are homogenously loaded on the RGO nanosheets, interconnecting to form 3D mesoporous architecture nanostructures. The Sn4P3/RGO hybrid architecture materials exhibit significantly improved electrochemical performance of high reversible capacity, high‐rate capability, and excellent cycling performance as sodium ion batteries (SIBs) anode materials, showing an excellent reversible capacity of 656 mA h g?1 at a current density of 100 mA g?1 over 100 cycles, demonstrating a greatly enhanced rate capability of a reversible capacity of 391 mA h g?1 even at a high current density of 2.0 A g?1. Moreover, Sn4P3/RGO SIBs anodes exhibit a superior long cycling life, delivering a high capacity of 362 mA h g?1 after 1500 cycles at a high current density of 1.0 A g?1. The outstanding cycling performance and rate capability of these porous hierarchical Sn4P3/RGO hybrid anodes can be attributed to the advantage of porous structure, and the synergistic effect between Sn4P3 nanoparticles and RGO nanosheets.  相似文献   

10.
To develop a long cycle life and good rate capability electrode, 3D hierarchical porous α‐Fe2O3 nanosheets are fabricated on copper foil and directly used as binder‐free anode for lithium‐ion batteries. This electrode exhibits a high reversible capacity and excellent rate capability. A reversible capacity up to 877.7 mAh g?1 is maintained at 2 C (2.01 A g?1) after 1000 cycles, and even when the current is increased to 20 C (20.1 A g?1), a capacity of 433 mA h g?1 is retained. The unique porous 3D hierarchical nanostructure improves electronic–ionic transport, mitigates the internal mechanical stress induced by the volume variations of the electrode upon cycling, and forms a 3D conductive network during cycling. No addition of any electrochemically inactive conductive agents or polymer binders is required. Therefore, binder‐free electrodes further avoid the uneven distribution of conductive carbon on the current collector due to physical mixing and the addition of an insulator (binder), which has benefits leading to outstanding electrochemical performance.  相似文献   

11.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

12.
A simple ball‐milling method is used to synthesize a tin oxide‐silicon carbide/few‐layer graphene core‐shell structure in which nanometer‐sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few‐layer graphene coatings by in situ mechanical peeling. The SnO2‐SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g?1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g?1. A high reversible capacity of 425 mA h g?1 also can be obtained at a rate of 2 A g?1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2‐SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g?1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g?1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core‐shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high‐performance electrode materials involving structural conversion and transformation.  相似文献   

13.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

14.
Rechargeable aqueous zinc‐ion batteries (ZIBs) have been emerging as potential large‐scale energy storage devices due to their high energy density, low cost, high safety, and environmental friendliness. However, the commonly used cathode materials in ZIBs exhibit poor electrochemical performance, such as significant capacity fading during long‐term cycling and poor performance at high current rates, which significantly hinder the further development of ZIBs. Herein, a new and highly reversible Mn‐based cathode material with porous framework and N‐doping (MnOx@N‐C) is prepared through a metal–organic framework template strategy. Benefiting from the unique porous structure, conductive carbon network, and the synergetic effect of Zn2+ and Mn2+ in electrolyte, the MnOx@N‐C shows excellent cycling stability, good rate performance, and high reversibility for aqueous ZIBs. Specifically, it exhibits high capacity of 305 mAh g?1 after 600 cycles at 500 mA g?1 and maintains achievable capacity of 100 mAh g?1 at a quite high rate of 2000 mA g?1 with long‐term cycling of up to 1600 cycles, which are superior to most reported ZIB cathode materials. Furthermore, insight into the Zn‐storage mechanism in MnOx@N‐C is systematically studied and discussed via multiple analytical methods. This study opens new opportunities for designing low‐cost and high‐performance rechargeable aqueous ZIBs.  相似文献   

15.
Sodium‐ion batteries (SIBs) are considered to be promising energy storage devices for large‐scale grid storage application due to the vast earth‐abundance and low cost of sodium‐containing precursors. Designing and fabricating a highly efficient anode is one of the keys to improve the electrochemical performance of SIBs. Recently, fluoride‐based materials are found to show an exceptional anode function with high theoretical specific capacity, based on open‐framework structure enabling Na insertion and also exhibiting improved safety. However, fluoride‐based materials suffer from sluggish kinetics and poor capacity retention essentially due to low electric conductivity. Here, an efficient mixed‐conducting network offering fast pathways is proposed to address these issues. This network relies on titanium fluoride?carbon (TiF3?C) core/sheath nanofibers that are prepared via electrospinning. Such highly interconnected electrodes exhibit an enhanced and faster sodium storage performance. Carbon sheath nanofibers are key to an efficient ion‐ and electron‐conducting network that enable Na+/e? transfer to reach the nanosized TiF3. In addition, in‐situ‐converted Ti and NaF particles embedded in the carbon matrix allow high reversible interfacial storage. As a result, the TiF3?C core/sheath electrode exhibits a high capacity of 161 mAh g?1 at a high current density of 1000 mA g?1 over 2000 cycles.  相似文献   

16.
Antimony (Sb) has emerged as an attractive anode material for both lithium and sodium ion batteries due to its high theoretical capacity of 660 mA h g?1. In this work, a novel peapod‐like N‐doped carbon hollow nanotube encapsulated Sb nanorod composite, the so‐called nanorod‐in‐nanotube structured Sb@N‐C, via a bottom‐up confinement approach is designed and fabricated. The N‐doped‐carbon coating and thermal‐reduction process is monitored by in situ high‐temperature X‐ray diffraction characterization. Due to its advanced structural merits, such as sufficient N‐doping, 1D conductive carbon coating, and substantial inner void space, the Sb@N‐C demonstrates superior lithium/sodium storage performance. For lithium storage, the Sb@N‐C exhibits a high reversible capacity (650.8 mA h g?1 at 0.2 A g?1), excellent long‐term cycling stability (a capacity decay of only 0.022% per cycle for 3000 cycles at 2 A g?1), and ultrahigh rate capability (343.3 mA h g?1 at 20 A g?1). For sodium storage, the Sb@N‐C nanocomposite displays the best long‐term cycle performance among the reported Sb‐based anode materials (a capacity of 345.6 mA h g?1 after 3000 cycles at 2 A g?1) and an impressive rate capability of up to 10 A g?1. The results demonstrate that the Sb@N‐C nanocomposite is a promising anode material for high‐performance lithium/sodium storage.  相似文献   

17.
Achieving a high areal capacity is essential for the transfer of outstanding laboratory electrode results to commercial applications and also to ensure there exists a capacity matched cathode and anode for a properly tuned battery. Despite intensive efforts, most electrode materials exhibit areal capacities lower than that of the graphite anodes (4 mA h cm?2). An effective and low‐cost approach is reported to attain a high areal capacity via an intense densification by compacting a porous carbon nanotube sponge grafted with Co3O4 nanoparticles. The hybrid sponge can be compacted to a large degree (up to a tenfold densification) while still keeping its structural integrity and the 3D porous network. This method allows achieving a mass loading of up ?to 14.3 mg cm?2 and an areal capacity of 12 mA h cm?2 (at a current density of 200 mA g?1) together with a gravimetric capacity of >800 mA h g?1. This densification by compaction approach offers an effective and low‐cost strategy to develop high mass loading and areal capacity electrodes for practical energy storage systems.  相似文献   

18.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   

19.
Transition‐metal phosphides (TMPs)‐based electrode materials with high capacity have attracted considerable interest as a promising anode material for lithium?ion batteries (LIBs). Herein, a hierarchical cable‐like structure composed of CoP@C core?shell nanoparticles (NPs) encapsulated in one‐dimensional (1D) porous carbon framework intertwined with N‐doped carbon nanotubes (CoP@C?PCF/NCNTs) is synthesized by a self‐templating, self‐catalytic, and subsequent vapor‐phase phosphorization strategy. The unique nanoarchitecture regime provides multiple advantages. The 1D carbon framework allows for quick ion and electron access, maintaining the integrity and accommodating the volume change of the structure during repeated discharging/charging. The internal carbon shell can prevent the direct aggregation of CoP NPs on cycling. The external NCNTs on the surface supply a staggered conductive network to promote electrolyte penetration and charge transportation. Impressively, the as‐fabricated hybrid nanocables deliver a reversible capacity of 712 mAh g?1 at 0.5 A g?1 for over 700 cycles with excellent rate capability as an anode material for LIBs. The significantly improved lithium storage properties of CoP@C?PCF/NCNTs reveal the importance of reasonable design and engineering of novel hierarchical structures with higher complexity.  相似文献   

20.
Metal–organic framework derived approaches are emerging as a viable way to design carbon‐confined transitional metal phosphides (TMPs@C) for energy storage and conversion. However, their preparation generally involves a phosphorization using a large amount of additional P sources, which inevitably releases flammable, poisonous PH3. Therefore, developing an efficient strategy for eco‐friendly synthesis of TMPs@C is full of challenges. Here, a metal–organophosphine framework (MOPF) derived strategy is developed to allow an eco‐friendly design of TMPs@C without an additional P source, avoiding release of PH3. To illustrate this strategy, 1,3,5‐triaza‐7‐phosphaadamantane (PTA) ligands and Cu(NO3)2 metal centers are employed to construct Cu/PTA‐MOPFs nanosheets. Cu/PTA‐MOPFs can be directly converted to carbon‐confined Cu3P nanoparticles by annealing. Benefiting from high heteroatom content in PTA, a high doping content of 3.92 at% N and 8.26 at% P can also be achieved in the carbon matrix. As a proof‐of‐concept application, N,P‐codoped carbon‐confined Cu3P nanoparticles as anodes for Na‐ion storage exhibit a high initial reversible capacity of 332 mA h g?1 at 50 mA g?1, and superb rate and cyclic performance. Due to rich coordination modes of organophosphine, MOPFs are expected to become a promising molecular platform for design of various heteroatom‐doped TMPs@C for energy storage and conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号