首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, a simple active materials synthesis method is presented that boosts electrode performance and utilizes a facile screen‐printing technique to prepare scalable patterned flexible supercapacitors based on manganese hexacyanoferrate‐manganese oxide and electrochemically reduced graphene oxide electrode materials (MnHCF‐MnOx/ErGO). A very simple in situ self‐reaction method is developed to introduce MnOx pseudocapacitor material into the MnHCF system by using NH4F. This MnHCF‐MnOx electrode materials can deliver excellent capacitance of 467 F g?1 at a current density of 1 A g?1, which is a 2.4 times capacitance increase compared to MnHCF. In addition a printed, patterned, flexible MnHCF‐MnOx/ErGO supercapacitor is fabricated, showing a remarkable areal capacitance of 16.8 mF cm?2 and considerable energy and power density of 0.5 mWh cm?2 and 0.0023 mW cm?2, respectively. Furthermore, the printed patterned flexible supercapacitors also exhibit exceptional flexibility, and the capacitance remains stable, even while bending to various angles (60°, 90°, and 180°) and for 100 cycles. The flexible supercapacitor arrays integrated by multiple prepared single supercapacitors can power various LEDs even in the bent states. This approach offers promising opportunities for the development of printable energy storage materials and devices with high energy density, large scalability, and excellent flexibility.  相似文献   

2.
A three‐component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ‐MnO2 nanoflowers anchored onto carbon nanotubes (γ‐MnO2/CNT) as spacers for graphene nanosheets (GNs). The three‐component, composite electrode doubles the specific capacitance with respect to GN‐only electrodes, giving the highest‐reported specific capacitance (308 F g?1) for symmetric supercapacitors containing MnO2 and GNs using a two‐electrode configuration, at a scan rate of 20 mV s?1. A maximum energy density of 43 W h kg?1 is obtained for our symmetric supercapacitors at a constant discharge‐current density of 2.5 A g?1 using GN–(γ‐MnO2/CNT)‐nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles.  相似文献   

3.
Sandwich‐type microporous hybrid carbon nanosheets (MHCN) consisting of graphene and microporous carbon layers are fabricated using graphene oxides as shape‐directing agent and the in‐situ formed poly(benzoxazine‐co‐resol) as carbon precursor. The reaction and condensation can be readily completed within 45 min. The obtained MHCN has a high density of accessible micropores that reside in the porous carbon with controlled thickness (e.g., 17 nm), a high surface area of 1293 m2 g?1 and a narrow pore size distribution of ca. 0.8 nm. These features allow an easy access, a rapid diffusion and a high loading of charged ions, which outperform the diffusion rate in bulk carbon and are highly efficient for an increased double‐layer capacitance. Meanwhile, the uniform graphene percolating in the interconnected MHCN forms the bulk conductive networks and their electrical conductivity can be up to 120 S m?1 at the graphene percolation threshold of 2.0 wt.%. The best‐practice two‐electrode test demonstrates that the MHCN show a gravimetric capacitance of high up to 103 F g?1 and a good energy density of ca. 22.4 Wh kg?1 at a high current density of 5 A g?1. These advanced properties ensure the MHCN a great promise as an electrode material for supercapacitors.  相似文献   

4.
The charge storage characteristics of a composite nanoarchitecture with a highly functional 3D morphology are reported. The electrodes are formed by the electropolymerization of aniline monomers into a nanometer‐thick polyaniline (PANI) film that conformally coats graphitic petals (GPs) grown by microwave plasma chemical vapor deposition (MPCVD) on conductive carbon cloth (CC). The hybrid CC/GPs/PANI electrodes yield results near the theoretical maximum capacitance for PANI of 2000 F g?1 (based on PANI mass) and a large area‐normalized specific capacitance of ≈2.6 F cm?2 (equivalent to a volumetric capacitance of ≈230 F cm?3) at a low current density of 1 A g?1 (based on PANI mass). The specific capacitances remain above 1200 F g?1 (based on PANI mass) for currents up to 100 A g?1 with correspondingly high area‐normalized values. The hybrid electrodes also exhibit a high rate capability with an energy density of 110 Wh kg?1 and a maximum power density of 265 kW kg?1 at a current density of 100 A g?1. Long‐term cyclic stability is good (≈7% loss of initial capacitance after 2000 cycles), with coulombic efficiencies >99%. Moreover, prototype all‐solid‐state flexible supercapacitors fabricated from these hybrid electrodes exhibit excellent energy storage performance.  相似文献   

5.
Flexible fiber‐shaped supercapacitors have shown great potential in portable and wearable electronics. However, small specific capacitance and low operating voltage limit the practical application of fiber‐shaped supercapacitors in high energy density devices. Herein, direct growth of ultrathin MnO2 nanosheet arrays on conductive carbon fibers with robust adhesion is exhibited, which exhibit a high specific capacitance of 634.5 F g?1 at a current density of 2.5 A g?1 and possess superior cycle stability. When MnO2 nanosheet arrays on carbon fibers and graphene on carbon fibers are used as a positive electrode and a negative electrode, respectively, in an all‐solid‐state asymmetric supercapacitor (ASC), the ASC displays a high specific capacitance of 87.1 F g?1 and an exceptional energy density of 27.2 Wh kg?1. In addition, its capacitance retention reaches 95.2% over 3000 cycles, representing the excellent cyclic ability. The flexibility and mechanical stability of these ASCs are highlighted by the negligible degradation of their electrochemical performance even under severely bending states. Impressively, as‐prepared fiber‐shaped ASCs could successfully power a photodetector based on CdS nanowires without applying any external bias voltage. The excellent performance of all‐solid‐state ASCs opens up new opportunity for development of wearable and self‐powered nanodevices in near future.  相似文献   

6.
The use of perovskite materials as anion‐based intercalation pseudocapacitor electrodes has received significant attention in recent years. Notably, these materials, characterized by high oxygen vacancy concentrations, do not require high surface areas to achieve a high energy storage capacity as a result of the bulk intercalation mechanism. This study reports that reduced PrBaMn2O6–δ (r‐PBM), possessing a layered double perovskite structure, exhibits ultrahigh capacitance and functions as an excellent oxygen anion‐intercalation‐type electrode material for supercapacitors. Formation of the layered double perovskite structure, as facilitated by hydrogen treatment, is shown to significantly enhance the capacitance, with the resulting r‐PBM material demonstrating a very high gravimetric capacitance of 1034.8 F g?1 and an excellent volumetric capacitance of ≈2535.3 F cm?3 at a current density of 1 A g?1. The resultant formation of a double perovskite crystal oxide with a specific layered structure leads to the r‐PBM with a substantially higher oxygen diffusion rate and oxygen vacancy concentration. These superior characteristics show immense promise for their application as oxygen anion‐intercalation‐type electrodes in pseudocapacitors.  相似文献   

7.
Fullerenes are of tremendous interest from fundamental researches to applied perspectives in the past decades. However, their application in supercapacitors has been underdeveloped for a long time. Here, the KOH activation of C70 microtubes is reported at high temperatures, which provides activated samples exhibiting excellent capacitive properties. The improved capacitive performance can be attributed to three aspects: the generation of macropores and micropores, the introduction of oxygen functionalities, and the formation of graphitic carbons from ellipsoidal fullerenes. The optimum activated state for supercapacitor application is achieved at 600 °C, at which the product exhibits the best electrochemical behavior with a gravimetric capacitance of 362.0 F g?1 at 0.1 A g?1 and excellent cycling stability with capacitance retention of 92.5% over 5000 cycles at 1 A g?1.  相似文献   

8.
Supercapacitors are known for their rapid energy charge–discharge properties, often ten to a hundred times faster than batteries. However, there is still a demand for supercapacitors with even faster charge–discharge characteristics to fulfill the requirements of emerging technologies. The power and rate capabilities of supercapacitors are highly dependent on the morphology of their electrode materials. An electrically conductive 3D porous structure possessing a high surface area for ions to access is ideal. Using a flash of light, a method to produce highly interconnected 3D graphene architectures with high surface area and good conductivity is developed. The flash converted graphene is synthesized by reducing freeze‐dried graphene oxide using an ordinary camera flash as a photothermal source. The flash converted graphene is used in coin cell supercapacitors to investigate its electrode materials properties. The electrodes are fabricated using either a precoating flash conversion or a postcoating flash conversion of graphene oxide. Both techniques produce supercapacitors possessing ultra‐high power (5–7 × 105 W kg?1). Furthermore, optimized supercapacitors retain >50% of their capacitance when operated at an ultrahigh current density up to 220 A g?1.  相似文献   

9.
Carbonaceous materials are attractive supercapacitor electrode materials due to their high electronic conductivity, large specific surface area, and low cost. Here, a unique hierarchical porous N,O,S‐enriched carbon foam (KNOSC) with high level of structural complexity for supercapacitors is reported. It is fabricated via a combination of a soft‐template method, freeze‐drying, and chemical etching. The carbon foam is a macroporous structure containing a network of mesoporous channels filled with micropores. It has an extremely large specific surface area of 2685 m2 g?1. The pore engineered carbon structure is also uniformly doped with N, O, and S. The KNOSC electrode achieves an outstanding capacitance of 402.5 F g?1 at 1 A g?1 and superior rate capability of 308.5 F g?1 at 100 A g?1. The KNOSC exhibits a Bode frequency at the phase angle of ?45° of 18.5 Hz, which corresponds to a time constant of 0.054 s only. A symmetric supercapacitor device using KNOSC as electrodes can be charged/discharged within 1.52 s to deliver a specific energy density of 15.2 W h kg?1 at a power density of 36 kW kg?1. These results suggest that the pore and heteroatom engineered structures are promising electrode materials for ultrafast charging.  相似文献   

10.
Constructing well defined nanostructures is promising but still challenging for high‐efficiency catalysts for hydrogen evolution reaction (HER) and energy storage. Herein, utilizing the differences in surface energies between (111) facets of CoP and NiCoP, a novel CoP/NiCoP heterojunction is designed and synthesized with a nanotadpoles (NTs)‐like morphology via a solid‐state phase transformation strategy. By effective interface construction, the disorder in terms of electronic structure and coordination environment at the interface in CoP/NiCoP NTs is created, which leads to dramatically elevated HER performance within a wide pH range. Theoretical calculations prove that an optimized proton chemisorption and H2O dissociation are achieved by an optimized phosphide polymorph at the interface, accelerating the HER reaction. The CoP/NiCoP NTs are also proved to be excellent candidates for use in supercapacitors (SCs) with a high specific capacitance (1106.2 F g?1 at 1 A g?1) and good cycling stability (nearly 100% initial capacity retention after 1000 cycles). An asymmetric supercapacitor shows a high energy density (145 F g?1 at 1 A g?1) and good cycling stability (capacitance retention is 95% after 3200 cycles). This work provides new insights into the catalyst design for electrocatalytic and energy storage applications.  相似文献   

11.
Vertical graphene nanosheets (VGNS) hold great promise for high‐performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three‐dimensional, open network structure. However, it remains challenging to materialise the VGNS‐based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non‐cost effective way of fabrication. Here we use a single‐step, fast, scalable, and environmentally‐benign plasma‐enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder‐free supercapacitor electrodes exhibit high specific capacitance up to 230 F g?1 at a scan rate of 10 mV s?1 and >99% capacitance retention after 1,500 charge‐discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano‐architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma‐unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.  相似文献   

12.
Yolk‐shelled particles with tailored physical and chemical properties are attractive for electrochemical energy storage. Starting with metal acetate hydroxide with tetragonal prism‐like shapes, yolk‐shelled Ni–Co mixed oxide nanoprisms with tunable composition have been prepared by simple thermal annealing in air. It is found that the yolk‐shelled structure is formed due to the fast thermally driven contraction process. With the favorable porous structure and composition, these yolk‐shelled Ni–Co oxide particles manifest greatly enhanced electrochemical properties when evaluated as electrodes for both hybrid supercapacitors and lithium ion batteries. In particular, the resultant Ni0.37Co oxide sample delivers very high specific capacitance of over 1000 F g?1 at a current density of 10 A g?1 with remarkably high capacitance retention of 98% after 15 000 cycles.  相似文献   

13.
Nanoporous carbons (NPCs) with engineered specific pore sizes and sufficiently high porosities (both specific surface area and pore volume) are necessary for storing energy in the form of electric charges and molecules. Herein, NPCs, derived from biomass pine‐cones, coffee‐grounds, graphene‐oxide and metal‐organic frameworks, with systematically increased pore width (<1.0 nm to a few nm), micropore volume (0.2–0.9 cm3 g?1) and specific surface area (800–2800 m2 g?1) are presented. Superior CO2, H2, and H2O uptakes of 35.0 wt% (≈7.9 mmol g?1 at 273 K), 3.0 wt% (at 77 K) and 85.0 wt% (at 298 K), respectively at 1 bar, are achieved. At controlled microporosity, supercapacitors deliver impressive performance with a capacity of 320 and 230 F g?1 at 500 mA g?1, in aqueous and organic electrolytes, respectively. Excellent areal capacitance and energy density (>50 Wh kg?1 at high power density, 1000 W kg?1) are achieved to form the highest reported values among the range of carbons in the literature. The noteworthy energy storage performance of the NPCs for all five cases (CO2, H2, H2O, and capacitance in aqueous and organic electrolytes) is highlighted by direct comparison to numerous existing porous solids. A further analysis on the specific pore type governed physisorption capacities is presented.  相似文献   

14.
Supercapacitors, also known as electrochemical capacitors, can provide much faster charge–discharge, greater power density, and cyclability than batteries, but they are still limited by lower energy densities (or the amount of energy stored per unit volume). Here, a novel strategy for the synthesis of functional pillared graphene frameworks, in which graphene fragments in‐between graphene sheets, through simple thermal‐treatment of ozone (O3)‐treated graphene oxide at very low temperature of 200 °C is reported. Due to its high packing density, high content of stable oxygen species, and continues ion transport network in‐between graphene sheets, the functional pillared‐graphene framework delivers not only high gravimetric capacitance (353 F g?1 based on the mass of the active material) and ultrahigh volumetric capacitance (400 F cm?3 based on total mass of electrode material) in aqueous electrolyte but also excellent cyclic stability with 104% of its initial capacitance retention after 10 000 cycles. Moreover, the assembled symmetric supercapacitor achieves as high as 27 Wh L?1 of volumetric energy density at a power density of 272 W L?1. This novel strategy holds great promise for future design of high volumetric capacitance supercapacitors.  相似文献   

15.
A simple and scalable method to fabricate graphene‐cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder‐free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three‐dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm?2, which is equivalent to a gravimetric capacitance of 120 F g?1 of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP‐based polymer supercapacitors with various architectures are assembled to meet the power‐energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm?2 for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices.  相似文献   

16.
Supercapacitors attract great interest because of the increasing and urgent demand for environment‐friendly high‐power energy sources. Ti3C2, a member of MXene family, is a promising electrode material for supercapacitors owing to its excellent chemical and physical properties. However, the highest gravimetric capacitance of the MXene‐based electrodes is still relatively low (245 F g?1) and the key challenge to improve this is to exploit more pseudocapacitance by increasing the active site concentration. Here, a method to significantly improve the gravimetric capacitance of Ti3C2Tx MXenes by cation intercalation and surface modification is reported. After K+ intercalation and terminal groups (OH?/F?) removing , the intercalation pseudocapacitance is three times higher than the pristine MXene, and MXene sheets exhibit a significant enhancement (about 211% of the origin) in the gravimetric capacitance (517 F g?1 at a discharge rate of 1 A g?1). Moreover, the as‐prepared electrodes show above 99% retention over 10 000 cycles. This improved electrochemical performance is attributed to the large interlayer voids of Ti3C2 and lowest terminated surface group concentration. This study demonstrates a new strategy applicable to other MXenes (Ti2CTx , Nb2CTx , etc.) in maximizing their potential applications in energy storage.  相似文献   

17.
Metal organic frameworks (MOFs) are considered as promising candidates for supercapacitors because of high specific area and potential redox sites. However, their shuffled orientations and low conductivity nature lead to severely‐degraded performance. Designing an accessibly‐manipulated and efficient method to address those issues is of outmost significance for MOF application in supercapacitors. It is the common way that MOFs scarify themselves as templates or precursors to prepare target products. But to reversely think it, using target products to prepare MOF could be the way to unlock the bottleneck of MOFs' performance in supercapacitors. Herein, a novel strategy using Co(OH)2 as both the template and precursor to fabricate vertically‐oriented MOF electrode is proposed. The electrode shows a double high specific capacitance of 1044 Fg?1 and excellent rate capability compared to MOF in powder form. An asymmetric supercapacitor was also fabricated, which delivers a maximum energy density of 28.5 W h kg?1 at a power density of 1500 W kg?1, and the maximum of 24000 W kg?1 can be obtained with a remaining energy density of 13.3 W h kg?1. Therefore, the proposed strategy paves the way to unlock the inherent advantages of MOFs and also inspires for advanced MOF synthesis with optimum performance.  相似文献   

18.
A simple and scalable method to fabricate a yarn‐type supercapacitor with a large specific capacitance without the aid of traditional pseudocapacitive electrode materials such as conducting polymers and metal oxides is reported. The yarn‐type supercapacitors are made from twisting reduced graphene oxide (rGO) or/and single‐walled carbon nanotubes (SWNTs)‐coated Korean traditional paper (KTP). The yarn‐type paper supercapacitor displays surprisingly enhanced electrochemical capacitance values, showing synergistic effect between rGO and SWNTs (500 times larger than performance of yarn‐type rGO‐coated paper supercapacitors). Coating rGO or/and SWNTs on KTP gives good morphology to the composite film, in which porosity increases and mean pore diameter decreases. The yarn‐type rGO/SWNT paper supercapacitor shows good mechanical strength, high flexibility, excellent electrochemical performance, and long‐life operation. The yarn‐type supercapacitor has an excellent electrochemical performance with a specific capacitance of 366 F g?1 at scan rate of 25 mV s?1 and high stability without any degradation in electrical performance up to 10 000 charge–discharge cycles. The average capacitance of rGO/SWNT@KTP yarn‐type supercapacitors is seven times higher than that of sheet‐type supercapacitors at scan rate of 500 mV s?1. The lighting of a red light‐emitting diode (LED) is demonstrated by the yarn‐type paper supercapacitor without connecting supercapacitors in series.  相似文献   

19.
To push the energy density limit of supercapacitors, a new class of electrode materials with favorable architectures is strongly needed. Binary metal sulfides hold great promise as an electrode material for high‐performance energy storage devices because they offer higher electrochemical activity and higher capacity than mono‐metal sulfides. Here, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen‐doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors. A facile two‐step method is developed for growth of NiCo2S4 nanosheets on NCF with robust adhesion, involving the growth of Ni‐Co precursor and subsequent conversion into NiCo2S4 nanosheets through sulfidation process. Benefiting from the compositional features and 3D electrode architectures, the NiCo2S4/NCF electrode exhibits greatly improved electrochemical performance with ultrahigh capacitance (877 F g?1 at 20 A g?1) and excellent cycling stability. Moreover, a binder‐free asymmetric supercapacitor device is also fabricated by using NiCo2S4/NCF as the positive electrode and ordered mesoporous carbon (OMC)/NCF as the negative electrode; this demonstrates high energy density (≈45.5 Wh kg?1 at 512 W kg?1).  相似文献   

20.
Aqueous asymmetric supercapacitors (ASCs) may offer comparable or higher energy density than electric double‐layer capacitors (EDLCs) based on organic electrolytes. As such, ASCs may be more suitable for integration into smart textiles, where the use of flammable organic solvents is not acceptable. However, reported ASC devices typically suffer from poor rate capability and low areal loadings. This study demonstrates the development of nitrogen‐doped carbon (N‐C) nanowire/metal oxide (Fe2O3 and MnO2) nanocomposite electrodes directly produced on the internal surface of a conductive fabric for use as high‐rate electrodes for solid‐state ASCs. The N‐C nanowires provide fast and efficient pathways for electrons, while short diffusion paths within nanosized metal oxides enable fast ion transport, leading to greatly enhanced performance at high rates. The porous structure of the fabric enables high areal capacitance loading in each electrode (≈150 mF cm?2). Both electrodes show high specific capacitance of ≈180 F g?1 (Fe2O3) and ≈250 F g?1 (MnO2) and excellent rate capability. Solid‐state ASCs assembled by using an aqueous gel electrolyte operate at 1.6 V and deliver over 60 mF cm?2 during ≈50 s charging/discharging time and over 30 mF cm?2 for ≈5 s discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号