首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Symmetry breaking provides a new material design strategy for nonfullerene small molecule acceptors (SMAs). The past 10 years have witnessed significant advances in asymmetric nonfullerene SMAs in organic solar cells (OSCs) with power conversion efficiency (PCE) increasing from ≈1% to ≈14%. In this review, the progress of asymmetric nonfullerene SMAs, including early reports of asymmetric nonfullerene SMAs, asymmetric PDI‐based nonfullerene SMAs, and asymmetric acceptor–donor–acceptor (A–D–A)‐type nonfullerene SMAs, is summarized. The structure–property relationships and the perspectives for future development of asymmetric nonfullerene SMAs are also discussed.  相似文献   

2.
The field of nonfullerene organic solar cells (OSCs) has seen an impressive progress, largely due to advances in high‐performance small molecule acceptors (SMAs). As a large portion of the solar energy is located in the near‐infrared region, it is important to develop ultralow‐bandgap SMAs that have extended absorption in the spectral range of 800–1000 nm to maximize light absorption and efficiencies. In this work, three low‐bandgap SMAs, namely, IXIC, IXIC‐2Cl, and IXIC‐4Cl, are designed and synthesized with same fused terthieno[3,2‐b]thiophene donor unit and different end groups (EGs). The three SMAs all have low optical bandgap (Eg) of 1.35, 1.30, and 1.25 eV, respectively. The chlorination on EGs can lower the energy level and broaden absorption range of the SMAs. As a result, the Voc of the devices is reduced but the Jsc is significantly increased. In addition, the addition of chlorine atoms can enhance π–π stacking and crystallinity of the SMAs, which result in high fill factors. Overall, the optimum EGs are monochlorine‐substituted IC and OSCs based on PBDB‐T:IXIC‐2Cl that can achieve remarkable power conversion efficiencies (PCEs) of 12.2%, which is one of the highest PCEs for nonfullerene organic solar cells based on low‐bandgap SMAs.  相似文献   

3.
Nonfullerene polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecular acceptors (SMAs) have recently attracted considerable attention. Although much of the progress is driven by the development of novel SMAs, the donor polymer also plays an important role in achieving efficient nonfullerene PSCs. However, it is far from clear how the polymer donor choice influences the morphology and performance of the SMAs and the nonfullerene blends. In addition, it is challenging to carry out quantitative analysis of the morphology of polymer:SMA blends, due to the low material contrast and overlapping scattering features of the π–π stacking between the two organic components. Here, a series of nonfullerene blends is studied based on ITIC‐Th blended with five different donor polymers. Through quantitative morphology analysis, the (010) coherence length of the SMA is characterized and a positive correlation between the coherence length of the SMA and the device fill factor (FF) is established. The study reveals that the donor polymer can significantly change the molecular ordering of the SMA and thus improve the electron mobility and domain purity of the blend, which has an overall positive effect that leads to the enhanced device FF for nonfullerene PSCs.  相似文献   

4.
Poly(3‐hexylthiophene) (P3HT)‐based organic solar cells (OSCs) have attracted much attention due to their advantages of low‐cost production and matured roll‐to‐roll manufacture. However, the efficiency of P3HT‐based OSCs lag much behind the non‐P3HT ones due to their negligible absorption of long wavelengths of light over 650 nm, high‐lying highest occupied molecular orbitals (HOMO), and difficulty of controlling morphology. In this study, the alkyl chains of the nonfullerene acceptors are replaced with alkoxy chains to achieve synergistic enhancement of all three parameters ( short circuit current density (JSC), open circuit voltage (VOC), and fill factor (FF)) and thus significant increase of power conversion efficiency for P3HT‐based OSCs. As a result, the OSCs exhibit a maxima efficiency of 6.6%. The P3HT‐based systems are systematically studied with optical spectroscopy, photoluminescence, cyclic voltametry, space charge limit current, grazing incident wide‐angle X‐ray scattering, transient absorption spectroscopy, transmission electron microscope, and atomic force microscopy to probe the mechanism, which reveal that introducing alkoxy chains simultaneously increases the energy levels of the HOMO and the lowest unoccupied molecular orbitals, enhances the light absorption, improves the rigidity of the backbone and charge transport mobility, and tunes the molecular orientation and film morphology, thus improving the photovoltaic performance. This contribution provides an important guidance in the design of novel nonfullerene acceptors for high‐performance P3HT‐based OSCs.  相似文献   

5.
Currently, constructing ternary organic solar cells (OSCs) and developing nonfullerene small molecule acceptors (n‐SMAs) are two pivotal avenues to enhance the device performance. However, introducing n‐SMAs into the ternary OSCs to construct thick layer device is still a challenge due to their inferior charge transport property and unclear aggregation mechanism. In this work, a novel wide band gap copolymer 4,8‐bis(4,5‐dioctylthiophen‐2‐yl) benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐N‐(2‐hexyldecyl)‐5,5′‐bis(thiophen‐2‐yl)‐2,2′‐bithiophene‐3,3′‐dicarboximide (PDOT) is designed and blend of PDOT:PC71BM achieves a power conversion efficiency (PCE) of 9.5% with active layer thickness over 200 nm. The rationally selected n‐SMA based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene) malononitrile groups (ITIC) is introduced into the host binary PDOT:PC71BM system to extend the absorption range and reduce the photo energy loss. After fully investigating the morphology evolution of the ternary blends, the different aggregation behavior of n‐SMAs with respect to their fullerene counterpart is revealed and the adverse effect of introducing n‐SMAs on charge transport is successfully avoided. The ternary OSC delivers a PCE of 11.2% with a 230 nm thick active layer, which is among the highest efficiencies of thick layer OSCs. The results demonstrate the feasibility of using n‐SMAs to construct a thick layer ternary device for the first time, which will greatly promote the efficiency of thick layer ternary devices.  相似文献   

6.
Ternary organic solar cells (OSCs) have attracted much research attention, as they can maintain the simplicity of the single‐junction device architecture while broadening the absorption range of OSCs. However, one main challenge that limits the development of ternary OSCs is the difficulty in controlling the morphology of ternary OSCs. In this paper, an effective approach to control the morphology is presented that leads to multiple cases of efficient nonfullerene ternary OSCs with efficiencies of up to 11.2%. This approach is based on a donor polymer with strong temperature dependent aggregation properties processed from hot solutions without any solvent additives and a pair of small molecular acceptors (SMAs) that have similar surface tensions and thus low propensity to form discrete phases. Such a ternary blend exhibits a simplified bulk‐heterojunction morphology that is similar to the morphology of previously reported binary blends. As a result, an almost linear relationship between VOC and film composition is observed for all nonfullerene ternary devices. Meanwhile, by carefully designing a control system with a large interfacial tension, a different phase separation and VOC dependence is demonstrated. This morphology control approach can be applicable to more material systems and accelerates the development of the ternary OSC field.  相似文献   

7.
Significant development has been achieved in nonfullerene organic solar cells. However, most of the high‐efficiency nonfullerene systems are composed of polymer donors and fused‐ring acceptors, and only a few small molecule donors can work well. Herein, a new A–D–A small molecule donor named NDTSR with naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) as building blocks is synthesized. Two energy levels well‐matched fused‐ring acceptors ITIC and IDIC are chosen to construct all‐small‐molecule solar cells with NDTSR, respectively. When mixed with IDIC, a high power conversion efficiency (PCE) of 8.05% is achieved, which is the highest efficiency for NDT‐based small molecule donor. However, the NDTSR:ITIC system only exhibits a low PCE of 1.77%. The big difference in the performance of these two systems should be attributed to the different morphology and phase separation resulting from the crystallinity and aggregation ability of the acceptors. The results demonstrate that NDT‐based small molecule is a promising candidate donor for all‐small‐molecule systems, while the crystallinity of fused‐ring acceptors is a critical factor for optimizing the phase separation in the active layer.  相似文献   

8.
A series of polycyclic aromatic hydrocarbons (PAHs) with extended π‐conjugated cores (from naphthalene, anthracene, pyrene, to perylene) are incorporated into nonfullerene acceptors for the first time. Four different fused‐ring electron acceptors (FREAs), i.e., DTN‐IC‐2Ph , DTA‐IC‐3Ph , DTP‐IC‐4Ph , and DTPy‐IC‐5Ph , are prepared via simple and facile synthetic procedures, yielding a remarkable platform to study the structure–property relationship for nonfullerene solar cells. With the PAH core being extended systematically, the gradually redshifted absorption with enhanced molar extinction coefficient (ε) is realized, the energy level of the highest occupied molecular orbital is up‐shifted, and the electron mobility is greatly enhanced. Meanwhile, the solubility decreases and the molecular packing becomes strengthened. As a result, with an optimized combination of these characteristics, DTP‐IC‐4Ph attains good solubility, high molar extinction coefficient, complementary absorption, suitable morphology, well‐matched energy levels, as well as efficient charge dissociation and transport in blend film. Consequently, the DTP‐IC‐4Ph ‐based solar cells with a donor polymer, poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) exhibit a promising power conversion efficiency of 10.37% without any additives, which is close to the best performance achieved in additive‐free nonfullerene solar cells (NFSCs). The results demonstrate that the PAH building blocks have great potential for the construction of novel FREAs for efficient additive‐free NFSCs.  相似文献   

9.
While the performance of laboratory‐scale organic solar cells (OSCs) continues to grow over 13%, the development of high‐efficiency large area OSCs still lags. One big challenge is that the formation of bulk heterojunction morphology is an extremely complicated process and the formed morphology is also a highly delicate balance involving many parameters such as domain size, purity, miscibility, etc. The morphology control becomes much more challenging when the device area is scaled up. In this work, a highly efficient (12.9%) nonfullerene organic solar cell processed using a sequential bilayer deposition method from nonhalogenated solvents, is reported. Using this bilayer processing method, the organic solar cells can be scaled up to a larger area (1 cm2) while maintaining a high performance of 11.4% using doctor‐blade‐coating technique. Moreover, as the acceptor is hidden behind the polymer donor, the possibility of degradation by sunlight is lessened. Thus, improved photostability is observed in the bilayer structure device when compared with the bulk heterojunction device. This method offers a truly compatible processing technique for printing large‐area OSC modules.  相似文献   

10.
Semitransparent organic solar cells (ST‐OSCs) have appealing features, such as flexibility, transparency, and color in addition to generating clean energy, and therefore show potential applications in building integrated photovoltaics and photovoltaic vehicles. Concerted efforts in materials synthesis (particularly low‐band‐gap polymer donors and nonfullerene acceptors) and device optimization (particularly incorporating transparent electrodes) have raised the efficiencies of ST‐OSCs to >10%, with average visible transparency of >30%. In this Research News article, the recent progress in nonfullerene‐based ST‐OSCs is summarized and discussed. The future perspectives and research directions for the ST‐OSCs field are proposed.  相似文献   

11.
Compared with nonfullerene‐based polymer solar cells, all‐small‐molecule solar cells normally show low power conversion efficiencies (PCEs) due to their low fill factors (FFs). Molecular stacking orientation and phase separation are the main factors affecting the performance of all‐small‐molecule solar cells. In this work, two liquid‐crystalline small‐molecule donors are designed and synthesized and a novel nonfullerene acceptor with good crystallinity developed. Owing to the face‐on orientation of the component molecules and appropriate phase separation in the active layer, a high FF of over 70% and a PCE of 10.7% are obtained from the resulting solar cells; these values are among the best obtained thus far for all‐small‐molecule solar cells. The high FF reported here is significant for a further design of high‐performance all‐small‐molecule solar cells.  相似文献   

12.
One of the most important factors that limits the efficiencies of bulk‐heterojunction organic solar cells (OSCs) is the modest open‐circuit voltage (Voc) due to their large voltage loss (Vloss) caused by significant nonradiative recombination loss. To boost the performance of OSCs toward their theoretical limit, developing high‐performance donor: acceptor systems featuring low Vloss with suppressed nonradiative recombination losses (<0.30 V) is desired. Herein, high performance OSCs based on a polymer donor benzodithiophene‐difluorobenzoxadiazole‐2‐decyltetradecyl (BDT‐ffBX‐DT) and perylenediimide‐based acceptors (PDI dimer with spirofluorene linker (SFPDI), PDI4, and PDI6) are reported which offer a high power conversion efficiency (PCE) of 7.5%, 56% external quantum efficiency associated with very high Voc (>1.10 V) and low Vloss (<0.60 V). A high Voc up to 1.23 V is achieved, which is among the highest values reported for OSCs with a PCE beyond 6%, to date. These attractive results are benefit from the suppressed nonradiative recombination voltage loss, which is as low as 0.20 V. This value is the lowest value for OSCs so far and is comparable to high performance crystalline silicon and perovskite solar cells. These results show that OSCs have the potential to achieve comparable Voc and voltage loss as inorganic photovoltaic technologies.  相似文献   

13.
Organic solar cells (OSCs) made of donor/acceptor bulk‐heterojunction active layers have been of widespread interest in converting sunlight to electricity. Characterizing of the complex morphology at multiple length scales of polymer:nonfullerene small molecular acceptor (SMA) systems remains largely unexplored. Through detailed characterizations (hard/soft X‐ray scattering) of the record‐efficiency polymer:SMA system with a close analog, quantitative morphological parameters are related to the device performance parameters and fundamental morphology–performance relationships that explain why additive use and thermal annealing are needed for optimized performance are established. A linear correlation between the average purity variations at small length scale (≈10 nm) and photovoltaic device characteristics across all processing protocols is observed in ≈12%‐efficiency polymer:SMA systems. In addition, molecular interactions as reflected by the estimated Flory–Huggins interaction parameters are used to provide context of the room temperature morphology results. Comparison with results from annealed devices suggests that the two SMA systems compared show upper and lower critical solution temperature behavior, respectively. The in‐depth understanding of the complex multilength scale nonfullerene OSC morphology may guide the device optimization and new materials development and indicates that thermodynamic properties of materials systems should be studied in more detail to aid in designing optimized protocols efficiently.  相似文献   

14.
Perylene diimide (PDI) with high electron affinities are promising candidates for applications in polymer solar cells (PSCs). In addition, the strength of π‐deficient backbones and end‐groups in an n‐type self‐dopable system strongly affects the formed end‐group‐induced electronic interactions. Herein, a series of amine/ammonium functionalized PDIs with excellent alcohol solubility are synthesized and employed as electron transporting layers (ETLs) in PSCs. The electron transfer properties of the resulting PDIs are dramatically tuned by different end‐groups and π‐deficient backbones. Notably, electron transfer is observed directly in solution in self‐doped PDIs for the first time. A significantly enhanced power conversion efficiency of 10.06% is achieved, when applying the PDIs as ETLs in PTB7‐Th:PC71BM‐based PSCs. These results demonstrate the potential of n‐type organic semiconductors with stable n‐type doping capability and facile solution processibility for future applications of energy transition devices.  相似文献   

15.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

16.
Two new nonfullerene small molecule acceptors (NF‐SMAs) AT‐NC and AT‐4Cl based on heptacyclic anthracene(cyclopentadithiophene) (AT) core and different electron‐withdrawing end groups are designed and synthesized. Although the two new acceptor molecules use two different end groups, naphthyl‐fused indanone (NINCN) and chlorinated INCN (INCN‐2Cl) demonstrate similar light absorption. AT‐4Cl with chlorinated INCN as end groups are shifted significantly due to the strong electron‐withdrawing ability of chlorine atoms. Thus, desirable Voc and photovoltaic performance are expected to be achieved when polymer PBDB‐T is used as the electron donor with AT‐NC as the acceptor, and fluorinated analog PBDB‐TF with down‐shifted energy levels is selected to blend with AT‐4Cl. Consequently, the device based on PBDB‐TF:AT‐4Cl yields a high power conversion efficiency of 13.27% with a slightly lower Voc of 0.901 V, significantly enhanced Jsc of 19.52 mA cm?2 and fill factor of 75.5% relative to the values based on PBDB‐T:AT‐NC. These results demonstrate that the use of a new electron‐rich AT core, together with energy levels modulations by end‐group optimizations enabling the match with polymer donors, is a successful strategy to construct high‐performance NF‐SMAs.  相似文献   

17.
Three low‐bandgap nonfullerene acceptors (NFAs) IDTO‐T‐4F, IDTO‐Se‐4F, and IDTO‐TT‐4F with extended conjugation length are designed and synthesized. Various π‐spacers, thiophene, selenophene, and thieno[3,2‐b]thiophene are incorporated to extend the conjugated length and enhance the backbone planarity via noncovalent O···S or O···Se interactions. These NFAs exhibit strong light absorption in the range of 600–900 nm with narrow bandgaps between 1.38 and 1.45 eV. By blending with a wide‐bandgap donor material PBDB‐T, organic solar cells (OSCs) based on these NFAs all yield high efficiency over 10% with low energy losses ranging from 0.52 to 0.59 eV. Importantly, as a result of relatively high lowest unoccupied molecular orbital level, large hole and electron mobility in blend film, and low charge carrier recombination loss, optimized devices based on IDTO‐T‐4F exhibit a large open‐circuit voltage of 0.864 V, a high short‐circuit current density of 20.12 mA cm?2, and a notable fill factor of 72.7%, leading to an impressive efficiency of 12.62%, which represents the best performance for NFA OSCs using noncovalent interactions in acceptor molecule design. The results indicate that optimizing the conjugation length and backbone planarity via intramolecular noncovalent O···S or O···Se interactions is a useful strategy for NFA materials invention toward high‐performance solar cells.  相似文献   

18.
“Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high‐efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main‐chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide‐bandgap polymer donor analogues composed of benzo[1,2‐b:4,5‐b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine‐ and ring‐substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.  相似文献   

19.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   

20.
The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7‐Th donor and 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene) (ITIC) acceptor fabricated by doctor‐blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large‐area (2.03 cm2) indium tin oxide (ITO)‐free doctor‐bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin‐coated counterpart. To understand the mechanism of the performance enhancement with doctor‐blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor‐blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8‐diiodooctane that prolongs the dynamic drying time of the doctor‐bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large‐area ITO‐free doctor‐bladed nonfullerene OSCs indicates the feasibility of doctor‐blade printing in large‐scale fullerene‐free OSC manufacturing. For the first time, the open‐circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号