首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the different nanostructures that have been demonstrated as promising materials for various applications, 3D nanostructures have attracted significant attention as building blocks for constructing high‐performance nanodevices. Particularly over the last decade, considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures as electrodes for electrochemical energy conversion and storage devices. Although remarkable progress has been achieved, the performance of electrochemical energy devices based on 3D nanostructures in terms of energy conversion efficiency, energy storage capability, and device reliability still needs to be significantly improved to meet the requirements for practical applications. Rather than simply outlining and comparing different 3D nanostructures, this article systematically summarizes the general advantages as well as the existing and future challenges of 3D nanostructures for electrochemical energy conversion and storage, focusing on photoelectrochemical water splitting, photoelectrocatalytic solar‐to‐fuels conversion from nitrogen and carbon dioxide, rechargeable metal‐ion batteries, and supercapacitors. A comprehensive understanding of these advantages and challenges shall provide valuable guidelines and enlightenments to facilitate the further development of 3D nanostructured materials, and contribute to the achieving more efficient energy conversion and storage technologies toward a sustainable energy future.  相似文献   

2.
In the past few decades, some novel low‐cost nanostructured devices have been explored for converting solar energy into electrical or chemical energy, such as organic photovoltaic cells, photoelectrochemical solar cells, and solar water splitting cells. Generally, higher light absorption and/or charge separation efficiency are considered as the main reasons for improved performance in a nanostructured device versus a planar structure. However, quantitative analysis and definite experimental evidence remain elusive. Here, using BiVO4 as an example, comparable samples with porous and dense structures have been prepared by a simple method. The porous and dense films are assembled into a solid‐electrolyte bulk and planar heterojunction, respectively. Some quantitative results are obtained by decoupling photon absorption, interfacial charge transfer, and charge separation processes. These results suggest that higher charge separation efficiency is mainly responsible for enhanced performance in a solid‐electrolyte bulk heterojunction. Moreover, we also present visualized evidence to show higher charge separation efficiency comes from a shorter photo‐generated hole diffusion distance in a bulk heterojunction. These results can deepen understanding charge transfer in a bulk heterojunction and offer guidance to design a more efficient low‐cost device for solar conversion and storage.  相似文献   

3.
4.
Water photolysis is a sustainable technology to convert natural solar energy and water into chemical fuels and is thus considered a thorough solution to the forthcoming energy crises. Unassisted water splitting that could directly harvest solar light and subsequently split water in a single device has become an important research theme. Three types of tandem devices including photoelectrochemical (PEC), photovoltaic (PV) cell/PEC and PV/electrolyser tandem cells are proposed to realize water photolysis at different levels of integration and component. Recent progress in tandem water splitting devices is summarized, and crucial issues on device optimization from the perspective of each photo‐absorber functionalities in band edge potential, light absorptivity and transmittance are discussed. By increasing the performances of stand‐alone PEC or PV devices, a 20% solar to hydrogen efficiency is predicted that is a significant value towards further application in practice. Accordingly, the challenges for materials development and configuration optimization are further outlined.  相似文献   

5.
Understanding the interfacial electronic structures of heterojunctions, a challenging undertaking, is extremely important to the design of photoelectrodes for efficient water splitting. The heterostructured interfaces in terms of crystal defects at the atomic‐level exemplified by TiO2/BiVO4 are studied. Results from both experimental observations and theoretical calculations clearly confirm the spontaneous formation of defective interfaces in the heterostructures. TiO2/BiVO4 junction with engineered interfacial defects can efficiently increase the carrier density and extend the lifetime of electrons. The inherent phenomenon of defective electronic structures in different heterostructures creates a significant impact on their photoelectrochemical performance. The synergetic effect between defect‐mediated mechanism and organic quantum dots sensitization yields significantly increased photoconversion efficiency, which is even superior to that of common metal sulfide sensitized ones. This result demonstrates an approach worthy for the design and fabrication of defect‐mediated heterostructures for water splitting, without utilizing harmful metal sulfides. Moreover, new insights into the influence of intrinsic defects on the interfacial charge transfer process between two different semiconductors for energy‐related applications have also been provided.  相似文献   

6.
Photoelectrochemical (PEC) water splitting has attracted increasing attention due to its potential to mitigate energy and environmental issues. Hybrid PEC systems containing semiconductor photosensitizers and molecular catalysts are reported to be highly active and stable for water splitting with great potential for facilitating clean fuels production. In this review, following a showcasing of the fundamental details of hybrid PEC systems for water splitting, semiconductor/molecular catalyst interface designs are highlighted, with a focus on interfacial physicochemical interactions and binding, and interfacial energetics and dynamics for efficient charge transfer. Recent advances in hybrid system assemblies for PEC water splitting are also briefly introduced. Finally, future challenges and directions in the field of hybrid PEC water splitting for solar energy conversion are reviewed. The current review provides state‐of‐the‐art strategies for optimized interface design for creating highly active and stable PEC water splitting assemblies.  相似文献   

7.
Titanium dioxide is a promising photoanode material for water oxidation, but it is substantially limited by its poor efficiency in the visible light range. Herein, an innovative carbon/nitrogen coimplantation method is utilized to realize the “Midas touch” transformation of TiO2 nanowire (NW) arrays for photoelectrochemical (PEC) water splitting in visible light. These modified golden–yellow rutile TiO2 NW arrays (C/N‐TiO2) exhibit remarkably enhanced absorption in visible light regions and more efficient charge separation and transfer. As a result, the photocurrent density of carbon/nitrogen co‐implanted TiO2 under visible light (>420 nm) can reach 0.76 mA cm?2, which far exceeds the value of 3 µA cm?2 seen for pristine TiO2 nanowire arrays at 0.8 V versus Ag/AgCl. An incident photon to electron conversion efficiency of ≈14.8% is achieved at 450 nm on C/N‐TiO2 without any other cocatalysts. The ion implantation doping approach, combined with codoping strategies, is proved to be an effective strategy for enhancing the photoelectrochemical conversion and can enable further improvement of the PEC water‐splitting performance of many other semiconductor photoelectrodes.  相似文献   

8.
Tandem photoelectrochemical water splitting cells utilizing crystalline Si and metal oxide photoabsorbers are promising for low‐cost solar hydrogen production. This study presents a device design and a scalable fabrication scheme for a tandem heterostructure photoanode: p+n black silicon (Si)/SnO2 interface/W‐doped bismuth vanadate (BiVO4)/cobalt phosphate (CoPi) catalyst. The black‐Si not only provides a substantial photovoltage of 550 mV, but it also serves as a conductive scaffold to decrease charge transport pathlengths within the W‐doped BiVO4 shell. When coupled with cobalt phosphide (CoP) nanoparticles as hydrogen evolution catalysts, the device demonstrates spontaneous water splitting without employing any precious metals, achieving an average solar‐to‐hydrogen efficiency of 0.45% over the course of an hour at pH 7. This fabrication scheme offers the modularity to optimize individual cell components, e.g., Si nanowire dimensions and metal oxide film thickness, involving steps that are compatible with fabricating monolithic devices. This design is general in nature and can be readily adapted to novel, higher performance semiconducting materials beyond BiVO4 as they become available, which will accelerate the process of device realization.  相似文献   

9.
Solar photoelectrochemical generation of fuel is a promising energy technology yet the lack of an efficient, robust photoanode remains a primary materials challenge in the development and deployment of solar fuels generators. Metal oxides comprise the most promising class of photoanode materials, but no known material meets the demanding requirements of low band gap energy, photoelectrocatalysis of the oxygen evolution reaction (OER), and stability under highly oxidizing conditions. Here, the identification of new photoelectroactive materials is reported through a strategic combination of combinatorial materials synthesis, high‐throughput photoelectrochemistry, optical spectroscopy, and detailed electronic structure calculations. Four photoelectrocatalyst phases, α ‐Cu2V2O7, β ‐Cu2V2O7, γ ‐Cu3V2O8, and Cu11V6O26, are reported with band gap energy at or below 2 eV. The photoelectrochemical properties and 30 min stability of these copper vanadate phases are demonstrated in three different aqueous electrolytes (pH 7, pH 9, and pH 13), with select combinations of phase and electrolyte exhibiting unprecedented photoelectrocatalytic stability for metal oxides with sub‐2 eV band gap. Through integration of experimental and theoretical techniques, new structure‐property relationships are determined and establish CuO–V2O5 as the most prominent composition system for OER photoelectrocatalysts, providing crucial information for materials genomes initiatives and paving the way for continued development of solar fuels photoanodes.  相似文献   

10.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   

11.
Stable, efficient, and low‐cost photoanodes are urgently required for manufacturing water‐splitting photoelectrochemical cells. Although silicon is a promising photoelectrode substrate, photocorrosion prevents its use in such devices, especially when employed as photoanodes for the oxygen evolution reaction (OER). Here, it is shown that Fe nanoparticles (NPs), deposited by cathodic electrodeposition onto n‐Si, can promote hole transfer for the OER. The influence of the surface coverage, the Si structure, as well as the electrolyte are studied here in detail. It is reported that the NP density and the Si structuration drastically affect the photoelectrochemical performance and that the electrolyte influences the stability, allowing operation times as long as 130 h for these inhomogeneously coated photoelectrodes.  相似文献   

12.
Realizing solar‐to‐hydrogen (STH) efficiencies close to 20% using low‐cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual‐absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand‐alone solar water splitting. A p+nn+ ‐Si/Ti/Pt photocathode is shown to present a remarkable photon‐to‐current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state‐of‐the‐art performance, an unprecedented 17.6% STH efficiency is achieved for self‐driven solar water splitting. Modeling and analysis of the dual‐absorber PEC system reveal that further work into replacing the noble‐metal catalyst materials with earth‐abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low‐cost high‐efficiency PEC system.  相似文献   

13.
Solar‐assisted photoelectrochemical (PEC) water splitting to produce hydrogen energy is considered the most promising solution for clean, green, and renewable sources of energy. For scaled production of hydrogen and oxygen, highly active, robust, and cost‐effective PEC electrodes are required. However, most of the available semiconductors as a PEC electrodes have poor light absorption, material degradation, charge separation, and transportability, which result in very low efficiency for photo‐water splitting. Generally, a promising photoelectrode is obtained when the surface of the semiconductor is modified/decorated with a suitable co‐catalyst because it increases the light absorbance spectrum and prevents electron–hole recombination during photoelectrode reactions. In this regard, numerous p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes have been widely used as semiconductor/co‐catalyst junctions to boost the performances of PEC overall water splitting. This review enumerates the recent progress and applications of p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes for water splitting. The focus is placed on fundamental mechanism, efficiency, cells design, and various aspects that contribute to the large‐scale prototype device. Finally, future perspectives, summary, challenges, and outlook for improving the activity of PEC photoelectrodes toward whole‐cell water splitting are addressed.  相似文献   

14.
Control over the topography of semiconducting materials can lead to enhanced performances in photoelectrochemical related applications. One means of implementing this is through direct patterning of metal‐based substrates, though this is inadequately developed. Conventional techniques for patterned fabrication commonly involve technologically demanding and tedious processes. 3D printing, a form of additive fabrication, enables creation of a 3D object by deposition of successive layers of material via computer control. In this work, the feasibility of fabricating metal‐based 3D printed photoelectrodes is explored. Electrodes comprised of conical arrays are fabricated and the performance for photoelectrochemical water splitting is further enhanced by the direct growth of TiO2 nanotubes on this platform. 3D metal printing provides a flexible and versatile approach for the design and fabrication of novel electrode structures.  相似文献   

15.
Photoelectrochemical (PEC) water splitting represents an environmentally friendly and sustainable method to obtain hydrogen fuel. Semiconductor materials as the central components in PEC water splitting cells have decisive influences on the device's solar‐to‐hydrogen conversion efficiency. Among semiconductors, metal oxides have received a lot of attention due to their outstanding (photo)‐electrochemical stability, low cost, favorable band edge positions and wide distribution of bandgaps. In the past decades, significant processes have been made in developing metal oxide nanomaterials for PEC water splitting. In this review, the recent progress using metal oxides as photoelectrodes and co‐catalysts for PEC water splitting is summarized. Their performance, limitations and potentials are also discussed. Last, the key challenges and opportunities in the development and implementation of metal oxide nanomaterials for PEC water splitting are discussed.  相似文献   

16.
Overall water splitting involved hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are critical for renewable energy conversion and storage. Heteroatom‐doped carbon materials have been extensively employed as efficient electrocatalysts for independent HER or OER processes, while those as the bifunctional catalysts for simultaneously generating H2 and O2 by splitting water have been seldom reported. Inspired by the unparalleled virtues of polydopamine, the authors devise the facile synthesis of nitrogen and sulfur dual‐doped carbon nanotubes with in situ, homogenous and high concentration sulfur doping. The newly developed dual‐doped electrocatalysts display superb bifunctional catalytic activities for both HER and OER in alkaline solutions, outperforming all other reported carbon counterparts. Experimental characterizations confirm that the excellent performance is attributed to the multiple doping together with efficient mass and charge transfer, while theoretical computations reveal the promotion effect of secondary sulfur dopant to enhance the spin density of dual‐doped samples and consequently to form highly electroactive sites for both HER and OER.  相似文献   

17.
18.
State‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe2O3/Fe2TiO5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm?2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe2TiO5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe2O3/Fe2TiO5/CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes.  相似文献   

19.
A thin silver chloride layer deposited on a conducting support photocatalyzes the oxidation of water to O(2) in the presence of a small excess of silver ions in solution. The light sensitivity in the visible part of the spectrum is due to self-sensitization caused by reduced silver species. Anodic polarization reoxidizes the reduced silver species. To test its water splitting capability, AgCl photoanodes as well as gold colloid modified AgCl photoanodes were combined with an amorphous silicon solar cell. The AgCl layer was employed in the anodic part of a setup for photoelectrochemical water splitting consisting of two separate compartments connected through a salt bridge. A platinum electrode and an amorphous silicon solar cell were used in the cathodic part. Illumination of the AgCl photoanode and the amorphous Si solar cell led to photoelectrochemical water splitting to O(2) and H(2). For AgCl photoanodes modified with gold colloids an increased photocurrent, and consequently a higher O(2) and H(2) production, were observed.  相似文献   

20.
The need for cost‐effective and sustainable power supplies has spurred a growing interest in hybrid energy harvesting systems, and the most elementary energy production process relies on intermittent solar power. Here, it is shown how the ambient mechanical energy leads to water splitting in a photoelectrochemical (PEC) cell boosted by a triboelectric nanogenerator (TENG). In this strategy, a flexible TENG collects and transforms mechanical energy into electric current, which boosts the PEC water splitting via the charged Li‐ion battery. Au nanoparticles are deposited on TiO2 nanoarrays for extending the available light spectrum to visible part by surface plasmon resonance effect, which yields a photocurrent density of 1.32 mA cm?2 under AM 1.5 G illumination and 0.12 mA cm?2 under visible light with a bias of 0.5 V. The TENG‐charged battery boosts the water splitting performance through coupling electrolysis and enhanced electron–hole separation efficiency. The hybrid cell exhibits an instantaneous current more than 9 mA with a working electrode area of 0.3 cm2, suggesting a simple but efficient route for simultaneously converting solar radiation and mechanical energy into hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号