首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

3.
Large‐scale electrochemical energy storage is a critical factor in the development of renewable energy sources to enable their intermittent power to become dispatchable. In this context, Na‐ion batteries are seen as promising alternatives to Li‐ion batteries, but their advancement requires the discovery of new materials, their electrochemical properties, and a better understanding of structure–property relationships that underpin the electrochemistry. This study presents a new class of Na+ insertion materials for Na‐ion batteries. By virtue of its moderately inductive polyanionic framework, the air and moisture stable selenite Na2Co2(SeO3)3 displays a highly suitable redox potential of ≈ 4 V versus Na/Na+ based on the Co2+/Co3+ couple, rendering it compatible with conventional liquid organic electrolytes. A microwave hydrothermal synthesis route is developed for the rapid synthesis of nanostructured Na2Co2(SeO3)3 and its conductive graphene oxide composite. The electrochemistry and structural evolution of Na2Co2(SeO3)3 determined on cycling the cathode in a Na battery was investigated by operando X‐ray diffraction, X‐ray photoelectron spectroscopy, and temperature dependent magnetic susceptibility measurements. These studies reveal good structural and electrochemical reversibility.  相似文献   

4.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   

5.
Hard carbon is regarded as the most promising anode material for commercialization of Na ion batteries because of its high capacity and low cost. At present, the practical utilization of hard carbon anodes is largely limited by the low initial Coulombic efficiency (ICE). Na ions have been found to adopt an adsorption–insertion storage mechanism. In this paper a systematic way to control the defect concentration and porosity of hard carbon with similar overall architectures is shown. This study elucidates that the defects in the graphite layers are directly related to the ICE as they would trap Na ions and create a repulsive electric field for other Na ions so as to shorten the low‐voltage intercalation capacity. The obtained low defect and porosity hard carbon electrode has achieved the highest ICE of 86.1% (94.5% for pure hard carbon material by subtracting that of the conductive carbon black), reversible capacity of 361 mA h g?1, and excellent cycle stability (93.4% of capacity retention over 100 cycles). This result sheds light on feasible design principles for high performance Na storage hard carbon: suitable carbon layer distance and defect free graphitic layers.  相似文献   

6.
Sodium superionic conductor (NASICON) cathodes are attractive for Na‐ion battery applications as they exhibit both high structural stability and high sodium ion mobility. Herein, a comprehensive study is presented on the structural and electrochemical properties of the NASICON‐Na3+yV2?yMny(PO4)3 (0 ≤ y ≤ 1) series. A phase miscibility gap is observed at y = 0.5, defining two solid solution domains with low and high Mn contents. Although, members of each of these domains Na3.25V1.75Mn0.25(PO4)3 and Na3.75V1.25Mn0.75(PO4)3 reversibly exchange sodium ions with high structural integrity, the activity of the Mn3+/Mn2+ redox couple is found to be absent and present in the former and latter candidate, respectively. Galvanostatic cycling and rate studies reveal higher capacity and rate capability for the Na3.75V1.25Mn0.75(PO4)3 cathode (100 and 89 mA h g?1 at 1C and 5C rate, respectively) in the Na3+yV2?yMny(PO4)3 series. Such a remarkable performance is attributed to optimum bottleneck size (≈5 Å2) and modulated V‐ and Mn‐redox centers as deduced from Rietveld analysis and DFT calculations, respectively. This study shows how important it is to manipulate electronic and crystal structures to achieve high‐performance NASICON cathodes.  相似文献   

7.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

8.
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.  相似文献   

9.
10.
Early demonstrations of wearable devices have driven interest in flexible lithium‐ion batteries. Previous demonstrations of flexible lithium‐ion batteries trade off between low areal capacity, poor mechanical flexibility and/or high thickness of inactive components. Here, a reinforced electrode design is used to support the active layers of the battery and a freestanding carbon nanotube (CNT) layer is used as the current collector. The supported architecture helps to increase the areal capacity (mAh cm‐2) of the battery and improve the tensile strength and mechanical flexibility of the electrodes. Batteries based on lithium cobalt oxide and lithium titanate oxide shows excellent electrochemical and mechanical performance. The battery has an areal capacity of ≈1 mAh cm‐2 and a capacity retention of around 94% after cycling the battery for 450 cycles at a C/2 rate. The reinforced electrode has a tensile strength of ≈5.5–7.0 MPa and shows excellent capacity retention after repeatedly flexing to a bending radius ranging from 45 to 10 mm. The relationships between mechanical flexing, electrochemical performance, and mechanical integrity of the battery are studied using electrochemical cycling, electron microscopy, and electrochemical impedance spectroscopy (EIS).  相似文献   

11.
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries.  相似文献   

12.
13.
14.
NaVPO4F has received a great deal of attention as cathode material for Na‐ion batteries due to its high theoretical capacity (143 mA h g?1), high voltage platform, and structural stability. Novel NaVPO4F/C nanofibers are successfully prepared via a feasible electrospinning method and subsequent heat treatment as self‐standing cathode for Na‐ion batteries. Based on the morphological and microstructural characterization, it can be seen that the NaVPO4F/C nanofibers are smooth and continuous with NaVPO4F nanoparticles (≈6 nm) embedded in porous carbon matrix. For Na‐storage, this electrode exhibits extraordinary electrochemical performance: a high capacity (126.3 mA h g?1 at 1 C), a superior rate capability (61.2 mA h g?1 at 50 C), and ultralong cyclability (96.5% capacity retention after 1000 cycles at 2 C). 1D NaVPO4F/C nanofibers that interlink into 3D conductive network improve the conductivity of NaVPO4F, and effectively restrain the aggregation of NaVPO4F particles during charge/discharge process, leading to the high performance.  相似文献   

15.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

16.
17.
Sodium‐ion batteries (SIBs) are now being actively developed as low cost and sustainable alternatives to lithium‐ion batteries (LIBs) for large‐scale electric energy storage applications. In recent years, various inorganic and organic Na compounds, mostly mimicked from their Li counterparts, have been synthesized and tested for SIBs, and some of them indeed demonstrate comparable specific capacity to the presently developed LIB electrodes. However, the lack of suitable cathode materials is still a major obstacle to the commercial development of SIBs. Here, we present a brief review on the recent developments of SIB cathodes, with a focus on low cost and high energy density materials (> 450 Wh kg?1 vs Na) together with discussion of their Na‐storage mechanisms. The considerable differences in the structural requirements for Li‐ and Na‐storage reactions mean that it is not sufficient to design SIB cathode materials by simply mimicking LIB materials, and therefore great efforts are needed to discover new materials and reaction mechanisms to further develop variable cathodes for advanced SIB technology. Some directions for future research and possible strategies for building advanced cathode materials are also proposed here.  相似文献   

18.
19.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   

20.
Despite a recent increase in the attention given to sodium rechargeable battery systems, they should be further advanced in terms of their energy density and reliability to successfully penetrate the rechargeable battery market. Here, a new room temperature ZEBRA‐type Na–CuCl2 rechargeable battery is demonstrated that employs CuCl2 cathode material and nonflammable inorganic liquid electrolyte. The cathode delivers a high energy density of ≈580 Wh kg?1 with superior capacity retention over 1000 cycles as well as a high round‐trip efficiency of ≈97%, which has never been obtained in an organic electrolyte system and high‐temperature ZEBRA‐type battery. These excellent electrochemical performances are mainly attributed to the use of the SO2‐based inorganic electrolyte, which guarantees a reversible conversion reaction between CuCl2 and CuCl with NaCl. It is also demonstrated that the proposed battery chemistry can be extended to other copper halide materials including CuBr2 and CuF2, which also show highly promising battery performances as cathode materials for the Na–Cu halide battery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号