首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Efficient sunlight‐driven water splitting devices can be achieved by pairing two absorbers of different optimized bandgaps in an optical tandem design. With tunable absorption ranges and cell voltages, organic–inorganic metal halide perovskite solar cells provide new opportunities for tailoring top absorbers for such devices. In this work, semitransparent perovskite solar cells are developed for use as the top cell in tandem with a smaller bandgap photocathode to enable panchromatic harvesting of the solar spectrum. A new CuInxGa1‐xSe2 multilayer photocathode is designed, exhibiting excellent performance for photoelectrochemical water reduction and representing a near‐ideal bottom absorber. When pairing it below a semitransparent CH3NH3PbBr3‐based solar cell, a solar‐to‐hydrogen efficiency exceeding 6% is achieved, the highest value yet reported for a photovoltaic–photoelectrochemical device utilizing a single‐junction solar cell as the bias source under one sun illumination. The analysis shows that the efficiency can reach more than 20% through further optimization of the perovskite top absorber.  相似文献   

2.
The scalable synthesis of highly transparent and robust sub‐monolayers of Co3O4 nano‐islands, which efficiently catalyze water oxidation, is reported. Rapid aerosol deposition of Co3O4 nanoparticles and thermally induced self‐organization lead to an ultra‐fine nano‐island morphology with more than 94% light transmission at a wavelength of 500 nm. These transparent sub‐monolayers demonstrate a remarkable mass‐weighted water oxidation activity of 2070–2350 A gCo3O4?1 and per‐metal turnover frequency of 0.38–0.62 s?1 at an overpotential of 400 mV in 1 m NaOH aqueous solution. This mixed valent cobalt oxide structure exhibits excellent long‐term electrochemical and mechanical stability preserving the initial catalytic activity over more than 12 h of constant current electrolysis and 1000 consecutive voltammetric cycles. The potential of the Co3O4 nano‐islands for photoelectrochemical water splitting has been demonstrated by incorporation of co‐catalysts in GaN nanowire photoanodes. The Co3O4‐GaN photoanodes reveal significantly reduced onset overpotentials, improved photoresponse and photostability compared to the bare GaN ones. These findings provide a highly performing catalyst structure and a scalable synthesis method for the engineering of efficient photoanodes for integrated solar water‐splitting cells.  相似文献   

3.
All‐perovskite multijunction photovoltaics, combining a wide‐bandgap (WBG) perovskite top solar cell (EG ≈1.6–1.8 eV) with a low‐bandgap (LBG) perovskite bottom solar cell (EG < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum‐assisted growth control (VAGC) of solution‐processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well‐established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge‐carrier lifetime. The improved optoelectronic characteristics enable high‐performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four‐terminal all‐perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active‐area solar cells up to 1 cm2.  相似文献   

4.
Organolead halide perovskite materials have demonstrated great potential in the solar cells field owing to their excellent optoelectronic properties. However, the instability issue of the perovskites impedes the translation of their attractive features for the solar fuel production such as photoelectrochemical H2 production from water splitting. Herein, CH3NH3PbI3 a photocathode with a sandwich‐like structure is fabricated with a general and scalable approach toward addressing this issue. The photocathode exhibits an onset potential at 0.95 V versus reversible hydrogen electrode (RHE) and a photocurrent density of ?18 mA cm?2 at 0 V versus RHE with an impressive ideal ratiometric power‐saved efficiency of 7.63%. More impressively, the photocathode retains good stability under 12 h continuous illumination in water at wide pH range. This performance is much superior to that of the best perovskite‐based photoelectrode ever reported.  相似文献   

5.
Although planar‐structured perovskite solar cells (PSCs) have power conversion efficiencies exceeding 24%, the poor photostability, especially with ultraviolet irradiance (UV) severely limits commercial application. The most commonly‐used TiO2 electron selective layer has a strong photocatalytic effect on perovskite/TiO2 interface when TiO2 is excited by UV light. Here a UV‐inert ZnTiO3 is reported as the electron selective layer in planar PSCs. ZnTiO3 is a perovskite‐structured semiconductor with excellent chemical stability and poor photocatalysis. Solar cells are fabricated with a structure of indium doped tin oxide (ITO)/ZnTiO3/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Sprio‐MeOTAD/Au. The champion device exhibits a stabilized power conversion efficiency of 19.8% with improved photostability. The device holds 90% of its initial efficiency after 100 h of UV soaking (365 nm, 8 mW cm?2), compared with 55% for TiO2‐based devices. This work provides a new class of electron selective materials with excellent UV stability in perovskite solar cell applications.  相似文献   

6.
The most important factors dominating solar hydrogen synthesis efficiency include light absorption, charge separation and transport, and surface chemical reactions (charge utilization). In order to tackle these factors, an ordered 1D junction cascade photoelectrode for water splitting, grown via a simple low‐cost solution‐based process and consisting of nanoparticulate BiVO4 on 1D ZnO rods with cobalt phosphate (Co‐Pi) on the surface is synthesized. Flat‐band measurements reveal the feasibility of charge transfer from BiVO4 to ZnO, supported by PL measurements and photocurrent observation in the presence of an efficient hole scavenger, which demonstrate that quenching of luminescence of BiVO4 and enhanced current are caused by electron transfer from BiVO4 to ZnO. A dramatic cathodic shift in onset potential under both visible and full arc irradiation, coupled with a 12‐fold increase in photocurrent (ca. 3 mA cm‐2) are observed compared to BiVO4, resulting in ≈47% IPCE at 410 nm (4% for BiVO4) with high solar energy conversion efficiency (0.88%). The reasons for these enhancements stem from enhanced light absorption and trapping, in situ rectifying electron transfer from BiVO4 to ZnO, hole transfer to Co‐Pi for water oxidation, and facilitating electron transport along 1D ZnO.  相似文献   

7.
Catalytic CO2 reforming of CH4 (CRM) to produce syngas (H2 and CO) provides a promising approach to reducing global CO2 emissions and the extensive utilization of natural gas resources. However, the rapid deactivation of the reported catalysts due to severe carbon deposition at high reaction temperatures and the large energy consumption of the process hinder its industrial application. Here, a method for almost completely preventing carbon deposition is reported by modifying the surface of Ni nanocrystals with silica clusters. The obtained catalyst exhibits excellent durability for CRM with almost no carbon deposition and deactivation after reaction for 700 h. Very importantly, it is found that CRM on the catalyst can be driven by focused solar light, thus providing a promising new approach to the conversion of renewable solar energy to fuel due to the highly endothermic characteristics of CRM. The reaction yields high production rates of H2 and CO (17.1 and 19.9 mmol min?1 g?1, respectively) with a very high solar‐to‐fuel efficiency (η, 12.5%). Even under focused IR irradiation with a wavelength above 830 nm, the η of the catalyst remains as high as 3.1%. The highly efficient catalytic activity arises from the efficient solar‐light‐driven thermocatalytic CRM enhanced by a novel photoactivation effect.  相似文献   

8.
Novel photovoltaic perovskite solar cells (PSCs) with high‐efficient photovoltaic property are largely in thrall to the uncertain perovskite grain size and inevitable defects. Here, inspired by the competitive growth between tree and grass in the forest system, a competitive perovskite grain growth approach via micro‐contact print (MicroCP) method (CD disk as templates) for printing wettability‐patterned substrate is proposed, aiming to achieve large‐grained perovskite and avoid discontinuous perovskite films caused by the low wettability of substrates. A MicroCP process is employed to construct a patterned wettability surface for the perovskite competitive growth mechanism on the electrode surface. This approach modifies the substrates quickly, ensures the uniform coverage of perovskite due to the function of ‐NH2 and Pb2+ bonds, and converts the perovskite films composed of small grains and pinholes into high‐quality perovskite films, free from pinholes and made up of large grains, resulting in efficiencies over 20% for the MicroCP PSCs.  相似文献   

9.
High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiOx) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiOx hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiOx HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiOx show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiOx HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm2.  相似文献   

10.
The notoriously poor stability of perovskite solar cells is a crucial issue restricting commercial applications. Here, a fluorinated perylenediimide (F‐PDI) is first introduced into perovskite film to enhance the device's photovoltaic performance, as well as thermal and moisture stability simultaneously. The conductive F‐PDI molecules filling at grain boundaries (GBs) and surface of perovskite film can passivate defects and promote charge transport through GBs due to the chelation between carbonyl of F‐PDI and noncoordinating lead. Furthermore, an effective multiple hydrophobic structure is formed to protect perovskite film from moisture erosion. As a result, the F‐PDI‐incorporated devices based on MAPbI3 and Cs0.05 (FA0.83MA0.17)0.95 Pb (Br0.17I0.83)3 absorber achieve champion efficiencies of 18.28% and 19.26%, respectively. Over 80% of the initial efficiency is maintained after exposure in air for 30 days with a relative humidity (RH) of 50%. In addition, the strong hydrogen bonding of F···H‐N can immobilize methylamine ion (MA+) and thus enhances the thermal stability of device, remaining nearly 70% of the initial value after thermal treatment (100 °C) for 24 h at 50% RH condition.  相似文献   

11.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

12.
Photocatalytic CO2 reduction is an effective means to generate renewable energy. It involves redox reactions, reduction of CO2 and oxidation of water, that leads to the production of solar fuel. Significant research effort has therefore been made to develop inexpensive and practically sustainable semiconductor‐based photocatalysts. The exploration of atomic‐level active sites on the surface of semiconductors can result in an improved understanding of the mechanism of CO2 photoreduction. This can be applied to the design and synthesis of efficient photocatalysts. In this review, atomic‐level reactive sites are classified into four types: vacancies, single atoms, surface functional groups, and frustrated Lewis pairs (FLPs). These different photocatalytic reactive sites are shown to have varied affinity to reactants, intermediates, and products. This changes pathways for CO2 reduction and significantly impacts catalytic activity and selectivity. The design of a photocatalyst from an atomic‐level perspective can therefore be used to maximize atomic utilization efficiency and lead to a high selectivity. The prospects for fabrication of effective photocatalysts based on an in‐depth understanding are highlighted.  相似文献   

13.
It is presented for the first time nontoxic CuGaS2/ZnS quantum dots (QDs) with free‐self‐reabsorption losses and large Stokes shift (>190 nm) synthesized on an industrially gram‐scale as an alternative for Cd‐based energy‐downshift (EDS)‐QD layers. The QDs exhibit a typical EDS that absorbs only UV light (<407 nm) and emits the whole range of visible light (400–800 nm) with a high photoluminescence‐quantum yield of ≈76%. The straightforward application of these EDS‐QDs on the front surface of a monocrystalline p‐type silicon solar cell significantly enhances the short‐circuit current density by ≈1.64 mA cm?2 (+4.20%); thereby, improving the power‐conversion‐efficiency by ≈4.11%. The significant improvement in the external quantum efficiency increases by ≈35.7% and that in the surface reflectance decreases by ≈14.1% in the UV region (300–450 nm) clearly manifest the photovoltaic enhancement. Such promising results together with the simple (one‐pot core/shell synthesis), cost‐effective (reduction in a bill of material–system by ≈2.62%), and scalable (2000 mL three‐neck flask, 11 g of QDs) preparation process might encourage the manufacturers of solar cells and other optoelectronic applications to apply these EDS‐QDs to different broader eco‐friendly applications.  相似文献   

14.
An artificial photosynthesis system based on N‐doped ZnTe nanorods decorated with an N‐doped carbon electrocatalyst layer is fabricated via an all‐solution process for the selective conversion of CO2 to CO. Substitutional N‐doping into the ZnTe lattice decreases the bandgap slightly and improves the charge transfer characteristics, leading to enhanced photoelectrochemical activity. Remarkable N‐doping effects are also demonstrated by the N‐doped carbon layer that promotes selective CO2‐to‐CO conversion instead of undesired water‐to‐H2 reduction by providing active sites for CO2 adsorption and activation, even in the absence of metallic redox centers. The photocathode shows promising performance in photocurrent generation (?1.21 mA cm?2 at ?0.11 VRHE), CO selectivity (dominant CO production of ≈72%), minor H2 reduction (≈20%), and stability (corrosion suppression). The metal‐free electrocatalyst/photocatalyst combination prepared via a cost‐effective solution process exhibits high performance due to synergistic effects between them, and thus may find application in practical solar fuel production.  相似文献   

15.
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro‐optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub‐second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi‐steady state photoinduced absorption processes, and X‐ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E‐field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3‐based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers.  相似文献   

16.
The performance of perovskite solar cells is sensitive to detrimental defects, which are prone to accumulate at the interfaces and grain boundaries of bulk perovskite films. Defect passivation at each region will lead to reduced trap density and thus less nonradiative recombination loss. However, it is challenging to passivate defects at both the grain boundaries and the bottom charge transport layer/perovskite interface, mainly due to the solvent incompatibility and complexity in perovskite formation. Here SnO2‐KCl composite electron transport layer (ETL) is utilized in planar perovskite solar cells to simultaneously passivate the defects at the ETL/perovskite interface and the grain boundaries of perovskite film. The K and Cl ions at the ETL/perovskite interface passivate the ETL/perovskite contact. Meanwhile, K ions from the ETL can diffuse through the perovskite film and passivate the grain boundaries. An enhancement of open‐circuit voltage from 1.077 to 1.137 V and a corresponding power conversion efficiency increasing from 20.2% to 22.2% are achieved for the devices using SnO2‐KCl composite ETL. The composite ETL strategy reported herein provides an avenue for defect passivation to further increase the efficiency of perovskite solar cells.  相似文献   

17.
This review article presents and discusses the recent progress made in the stabilization, protection, improvement, and design of halide perovskite‐based photocatalysts, photoelectrodes, and devices for solar‐to‐chemical fuel conversion. With the target of water splitting, hydrogen iodide splitting, and CO2 reduction reactions, the strategies established for halide perovskites used in photocatalytic particle‐suspension systems, photoelectrode thin‐film systems, and photovoltaic‐(photo)electrocatalysis tandem systems are organized and introduced. Moreover, recent achievements in discovering new and stable halide perovskite materials, developing protective and functional shells and layers, designing proper reaction solution systems, and tandem device configurations are emphasized and discussed. Perspectives on the future design of halide perovskite materials and devices for solar‐to‐chemical fuel conversion are provided. This review may serve as a guide for researchers interested in utilizing halide perovskite materials for solar‐to‐chemical fuel conversion.  相似文献   

18.
High temperature stable inorganic CsPbX3 (X: I, Br, or mixed halides) perovskites with their bandgap tailored by tuning the halide composition offer promising opportunities in the design of ideal top cells for high‐efficiency tandem solar cells. Unfortunately, the current high‐efficiency CsPbX3 perovskite solar cells (PSCs) are prepared in vacuum, a moisture‐free glovebox or other low‐humidity conditions due to their poor moisture stability. Herein, a new precursor system (HCOOCs, HPbI3, and HPbBr3) is developed to replace the traditional precursors (CsI, PbI2, and PbBr2) commonly used for solar cells of this type. Both the experiments and calculations reveal that a new complex (HCOOH?Cs+) is generated in this precursor system. The new complex is not only stable against aging in humid air ambient at 91% relative humidity, but also effectively slows the perovskite crystallization, making it possible to eliminate the popular antisolvent used in the perovskite CsPbI2Br film deposition. The CsPbI2Br PSCs based on the new precursor system achieve a champion efficiency of 16.14%, the highest for inorganic PSCs prepared in ambient air conditions. Meanwhile, high air stability is demonstrated for an unencapsulated CsPbI2Br PSC with 92% of the original efficiency remaining after more than 800 h aging in ambient air.  相似文献   

19.
An upscalable perovskite film deposition method combining raster ultrasonic spray coating and chemical vapor deposition is reported. This method overcomes the coating size limitation of the existing stationary spray, single‐pass spray, and spin‐coating methods. In contrast with the spin‐coating method (>90% Pb waste), negligible Pb waste during PbI2 deposition makes this method more environmentally friendly. Outstanding film uniformity across the entire area of 5 cm × 5 cm is confirmed by both large‐area compatible characterization methods (electroluminescence and scattered light imaging) and local characterization methods (atomic force microscopy, scanning electron microscopy, photoluminescence mapping, UV–vis, and X‐ray diffraction measurements on multiple sample locations), resulting in low solar cell performance decrease upon increasing device area. With the FAPb(I0.85Br0.15)3 (FA = formamidinium) perovskite layer deposited by this method, champion solar modules show a power conversion efficiency of 14.7% on an active area of 12.0 cm2 and an outstanding shelf stability (only 3.6% relative power conversion efficiency decay after 3600 h aging). Under continuous operation (1 sun light illumination, maximum power point condition, dry N2 atmosphere with <5% relative humidity, no encapsulation), the devices show high light‐soaking stability corresponding to an average T80 lifetime of 535 h on the small‐area solar cells and 388 h on the solar module.  相似文献   

20.
This study introduces zeolitic imidazolate framework‐8 (ZIF‐8) as the first metal‐organic framework based transparent surface passivation layer for photo‐electrochemical (PEC) water splitting. A significant enhancement for PEC water oxidation is demonstrated based on the in situ seamless coating of ZIF‐8 surface passivation layer on Ni foam (NF) supported ZnO nanorod arrays photoanode. The PEC performance is improved by optimizing the ZIF‐8 thickness and by grafting Ni(OH)2 nanosheets as synergetic co‐catalyst. With respect to ZnO/NF, the optimized Ni(OH)2/ZIF‐8/ZnO/NF photoanode exhibits a two times larger photocurrent density of 1.95 mA cm?2 and also a two times larger incident photon to current conversion efficiency of 40.05% (350 nm) at 1.23 V versus RHE (VRHE) under AM 1.5 G. The synergetic surface passivation and the co‐catalyst modification contribute to prolonging the charge lifetime, to promoting the charge transfer, and to decreasing the overpotential for water oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号