首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Developing low‐cost, highly efficient, and robust earth‐abundant electrocatalysts for hydrogen evolution reaction (HER) is critical for the scalable production of clean and sustainable hydrogen fuel through electrochemical water splitting. This study presents a facile approach for the synthesis of nanostructured pyrite‐phase transition metal dichalcogenides as highly active, earth‐abundant catalysts in electrochemical hydrogen production. Iron disulfide (FeS2) nanoparticles are in situ loaded and stabilized on reduced graphene oxide (RGO) through a current‐induced high‐temperature rapid thermal shock (≈12 ms) of crushed iron pyrite powder. FeS2 nanoparticles embedded in between RGO exhibit remarkably improved electrocatalytic performance for HER, achieving 10 mA cm?2 current at an overpotential as low as 139 mV versus a reversible hydrogen electrode with outstanding long‐term stability under acidic conditions. The presented strategy for the design and synthesis of highly active earth‐abundant nanomaterial catalysts paves the way for low‐cost and large‐scale electrochemical energy applications.  相似文献   

2.
Highly efficient and stable catalysts for the hydrogen evolution reaction, especially in alkaline conditions are crucial for the practical demands of electrochemical water splitting. Here, the synthesis of a novel RuAu single‐atom alloy (SAA) by laser ablation in liquid is reported. The SAA exhibits a high stability and a low overpotential, 24 mV@10 mA cm?2, which is much lower than that of a Pt/C catalyst (46 mV) in alkaline media. Moreover, the turnover frequency of RuAu SAA is three times that of Pt/C catalyst. Density functional theory computation indicates the excellent catalytic activity of RuAu SAAs originates from the relay catalysis of Ru and Au active sites. This work opens a new avenue toward high‐performance SAAs via fast quenching of immiscible metals.  相似文献   

3.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

4.
Efficient and selective dehydrogenation of hydrazine borane (HB), a novel hydrogen storage material with very high hydrogen content (HB, 15.4 wt%), is a key challenge for a fuel‐cell‐based hydrogen economy. However, even using the noble metal catalysts for HB decomposition, the activities are still far from satisfying, to say nothing of non‐noble‐metal‐containing catalysts. In response, as a proof‐of‐concept experiment, herein, noble‐metal‐free NiFe–CeOx nanoparticles are successfully immobilized on an MIL‐101 support without surfactant by a simple liquid impregnation method. Unexpectedly, the resultant Ni0.5Fe0.5–CeOx/MIL‐101 catalyst shows good performance, including 100% H2 selectivity, 100% conversion, and record catalytic activity (351.3 h?1) for hydrogen generation at mild temperature, which is even better than most of the noble metal heterogeneous catalysts and might be attributed to the good dispersion and uniform particle size of the Ni0.5Fe0.5–CeOx nanoparticles due to steric restrictions effect of the MIL‐101 support. Additionally, extending MIL‐101 to some other important kinds of metal–organic framework (MOF) structures, the resultant NiFe–CeOx/MOF catalysts all show good catalytic activity toward HB decomposition, showing the universality of the MOF supported NiFe–CeOx catalysts.  相似文献   

5.
The combination of precious metals with non‐noble metals is an effective way to develop highly efficient, stable, and low cost electrocatalysts for overall water splitting. Herein, RhCu nanotubes (NTs) with rich structural defects are successfully synthesized by a mixed‐solvent strategy, which display superior activity and excellent stability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction in all pH values. In particular, it only needs 8, 12, and 57 mV to deliver the current density of 10 mA cm?2 for HER in alkaline, acidic, and neutral conditions, respectively. Experiments combined with density functional theory (DFT) calculations reveal that the exposure of a suitable composition of a highly active Rh3Cu1 alloy phase through acid etching is the key to improve electrocatalytic performance, since it weakens the adsorption free energy of atomic oxygen and hydrogen, as well as facilitating the dissociation of water molecules. In addition, the structural defects can also boost the catalytic performance because the adsorption of reactants can be largely enhanced. The results provide a simple method to prepare alloy NTs as highly efficient electrocatalysts for overall water splitting in all pH values.  相似文献   

6.
Constructing 3D hierarchical architecture consisting of 2D hybrid nanosheets is very critical to achieve uppermost and stable electrochemical performance for both lithium‐ion batteries (LIBs) and hydrogen evolution reaction (HER). Herein, a simple synthesis of uniform 3D microspheres assembled from carbon nanosheets with the incorporated MoO2 nanoclusters is demonstrated. The MoO2 nanoclusters can be readily converted into the molybdenum carbide (Mo2C) nanocrystals by using high temperature treatment. Such assembling architecture is highly particular for preventing Mo‐based ultrasmall nanoparticles from coalescing or oxidizing and endowing them with rapid electron transfer. Consequently, the MoO2/C hybrids as LIB anode materials deliver a specific capacity of 625 mA h g?1 at 1600 mA g?1 even after 1000 cycles, which is among the best reported values for MoO2‐based electrode materials. Moreover, the Mo2C/C hybrids also exhibit excellent electrocatalytic activity for HER with small overpotential and robust durability in both acid and alkaline media. The present work highlights the importance of designing 3D structure and controlling ultrasmall Mo‐based nanoparticles for enhancing electrochemical energy conversion and storage applications.  相似文献   

7.
For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2 fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2 fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm?2 at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells.  相似文献   

8.
Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion.  相似文献   

9.
Functional nanomaterials are playing a crucial role in the emerging field of energy‐related devices. Recently, as a novel synthesis method, high‐temperature shock (HTS), which is rapid, low cost, eco‐friendly, universal, scalable, and controllable, has provided a promising option for the rational design and synthesis of various high‐quality nanomaterials. In this report, the HTS technique, including the equipment setup and operating principle, is systematically introduced, and recent progress in the synthesis of nanomaterials for energy storage and conversion applications using this HTS method is summarized. The growth mechanisms of nanoparticles and carbonaceous nanomaterials are thoroughly discussed, followed by the summary of the characteristic advantages of the HTS strategy. A series of nanomaterials prepared by the HTS method, including carbon‐based films, metal nanoparticles and compound nanoparticles, show high performance in the diverse applications of storage energy batteries, highly active catalysts, and smart energy devices. Finally, the future perspectives and directions of HTS in nanomanufacturing for broader applications are presented.  相似文献   

10.
The search for Pt‐free electrocatalysts exceeding pH‐universal hydrogen evolution reaction (HER) activities when compared to the state‐of‐the‐art commercial Pt/C is highly desirable for the development of renewable energy conversion systems but still remains a huge challenge. Here a colloidal synthesis of monodisperse Rh2P nanoparticles with an average size of 2.8 nm and their superior catalytic activities for pH‐universal HER are reported. Significantly, the Rh2P catalyst displays remarkable HER performance with overpotentials of 14, 30, and 38 mV to achieve 10 mA cm?2 in 0.5 m H2SO4, 1.0 m KOH, and 1.0 m phosphate‐buffered saline, respectively, exceeding almost all the documented electrocatalysts, including the commercial 20 wt% Pt/C. Density functional theory calculations reveal that the introduction of P into Rh can weaken the H adsorption strength of Rh2P to nearly zero, beneficial for boosting HER performance.  相似文献   

11.
Stem bark extracts of Indian Rosewood, a traditionally used Indian medicinal plant, were used as highly efficient multifunctional green chemicals/biogenic agents in the rapid synthesis of stable, monometallic Ag and Au nanoparticles and their corresponding bimetallic alloy nanoparticles with interesting shapes and morphological characteristics. We determined that the high efficiency of these extracts is due to the presence of complex multifunctional molecules, such as polyphenolics and hydroxyflavonoids, which are involved in the reduction of AuIII and AgI ions to zerovalent metallic nanoparticles and the stabilization of their corresponding nanoparticles.  相似文献   

12.
This study described the utility of green analytical chemistry in the synthesis of gelatin‐capped silver, gold and bimetallic gold–silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin‐capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV–vis, X‐ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol–potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco‐friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10–9 to 1.0 × 10–1 mol/L was obtained with a limit of detection of 5.0 × 10–10 mol/L and a limit of quantification of 1.0 × 10‐9 mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The safe and efficient storage and release of hydrogen are widely recognized as the main challenges for the establishment of a fuel‐cell‐based hydrogen economy. Formic acid (FA) has great potential as a safe and convenient source of hydrogen for fuel cells. Despite tremendous efforts, the development of heterogeneous catalysts with high activity and relatively low cost remains a major challenge. The synthesis of AuPd–MnOx nanocomposite immobilized on ZIF‐8–reduced‐graphene‐oxide (ZIF‐8–rGO) bi‐support by a wet‐chemical method is reported here. Interestingly, the resultant AuPd–MnOx/ZIF‐8–rGO shows excellent catalytic activity for the generation of hydrogen from FA, and the initial turnover frequency (TOF) reaches a highest value of 382.1 mol H2 mol catalyst?1 h?1 without any additive at 298 K. This good performance of AuPd–MnOx/ZIF‐8–rGO results from the modified electronic structure of Pd in the AuPd–MnOx/ZIF‐8–rGO composite, the small size and high dispersion of the AuPd–MnOx nanocomposite, and also the strong metal‐support interaction between the AuPd–MnOx and ZIF‐8–rGO bi‐support.  相似文献   

14.
The chainmail catalysts (transition metals or metal alloys encapsulated in carbon) are regarded as stable and efficient electrocatalysts for hydrogen generation. However, the fabrication of chainmail catalysts usually involves complex chemical vapor deposition (CVD) or prolonged calcination in a furnace, and the slurry‐based electrode assembly of the chainmail catalysts often suffers from inferior mass transfer and an underutilized active surface. In this work, a freestanding wood‐based open carbon framework is designed embedded with nitrogen (N) doped, few‐graphene‐layer‐encapsulated nickel iron (NiFe) alloy nanoparticles (N‐C‐NiFe). 3D wood‐derived carbon framework with numerous open and low‐tortuosity lumens, which are decorated with carbon nanotubes (CNTs) “villi”, can facilitate electrolyte permeation and hydrogen gas removal. The chainmail catalysts of the N‐C‐NiFe are uniformly in situ assembled on the CNT “villi” using a rapid heat shock treatment. The high heating and quenching rates of the heat shock method lead to formation of the well‐dispersed ultrafine nanoparticles. The self‐supported wood‐based carbon framework decorated with the chainmail catalyst displays high electrocatalytic activity and superior cycling durability for hydrogen evolution. The unique heat shock method offers a promising strategy to rapidly synthesize well‐dispersed binary and polynary metallic nanoparticles in porous matrices for high‐efficiency electrochemical energy storage and conversion.  相似文献   

15.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in zinc–air batteries (ZABs) require highly efficient, cost‐effective, and stable electrocatalysts as alternatives to high cost and low poison resistant platinum group metals (PGM) catalysts. Although nitrogen‐doped carbon nanotube (NCNT) arrays are now capable of catalyzing ORR efficiently, their hydrophobic surface and base‐growth mode are found to limit the catalytic performance in the practical ZABs. Here, the concept of an apically dominant mechanism in improving the catalytic performance of NCNT by precisely encapsulating CoNi nanoparticles (NPs) within the apical domain of NCNT on the Ni foam (denoted as CoNi@NCNT/NF) is demonstrated. The CoNi@NCNT/NF exhibits a more excellent catalytic performance toward both ORR and OER than that of traditional NCNT derived from the base‐growth method. The ZAB coin cell using CoNi@NCNT/NF as an air electrode shows a peak power density of 127 mW cm?2 with an energy density of 845 Wh kgZn?1 and rechargeability over 90 h, which outperforms the performance of PGM catalysts. Density functional theory calculations reveal that the ORR catalytic performance of the CoNi@NCNT/NF is mainly attributed to the synergetic contributions from NCNT and the apical active sites on NCNT near to CoNi NPs.  相似文献   

16.
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.  相似文献   

17.
An aqueous solution method is developed for the facile synthesis of Cl‐containing SnSe nanoparticles in 10 g quantities per batch. The particle size and Cl concentration of the nanoparticles can be efficiently tuned as a function of reaction duration. Hot pressing produces n‐type Cl‐doped SnSe nanostructured compacts with thermoelectric power factors optimized via control of Cl dopant concentration. This approach, combining an energy‐efficient solution synthesis with hot pressing, provides a simple, rapid, and low‐cost route to high performance n‐type SnSe thermoelectric materials.  相似文献   

18.
The proper choice of nonprecious transition metals as single atom catalysts (SACs) remains unclear for designing highly efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, reported is an activity correlation with catalysts, electronic structure, in order to clarify the origin of reactivity for a series of transition metals supported on nitrogen‐doped graphene as SACs for HER by a combination of density functional theory calculations and electrochemical measurements. Only few of the transition metals (e.g., Co, Cr, Fe, Rh, and V) as SACs show good catalytic activity toward HER as their Gibbs free energies are varied between the range of –0.20 to 0.30 eV but among which Co‐SAC exhibits the highest electrochemical activity at 0.13 eV. Electronic structure studies show that the energy states of active valence dz2 orbitals and their resulting antibonding state determine the catalytic activity for HER. The fact that the antibonding state orbital is neither completely empty nor fully filled in the case of Co‐SAC is the main reason for its ideal hydrogen adsorption energy. Moreover, the electrochemical measurement shows that Co‐SAC exhibits a superior hydrogen evolution activity over Ni‐SAC and W‐SAC, confirming the theoretical calculation. This systematic study gives a fundamental understanding about the design of highly efficient SACs for HER.  相似文献   

19.
Aucore/Ptshell–graphene catalysts (G‐Cys‐Au@Pt) are prepared through chemical and surface chemical reactions. Au–Pt core–shell nanoparticles (Au@Pt NPs) covalently immobilized on graphene (G) are efficient electrocatalysts in low‐temperature polymer electrolyte membrane fuel cells. The 9.5 ± 2 nm Au@Pt NPs with atomically thin Pt shells are attached on graphene via l ‐cysteine (Cys), which serves as linkers controlling NP loading and dispersion, enhancing the Au@Pt NP stability, and facilitating interfacial electron transfer. The increased activity of G‐Cys‐Au@Pt, compared to non‐chemically immobilized G‐Au@Pt and commercial platinum NPs catalyst (C‐Pt), is a result of (1) the tailored electron transfer pathways of covalent bonds integrating Au@Pt NPs into the graphene framework, and (2) synergetic electronic effects of atomically thin Pt shells on Au cores. Enhanced electrocatalytic oxidation of formic acid, methanol, and ethanol is observed as higher specific currents and increased stability of G‐Cys‐Au@Pt compared to G‐Au@Pt and C–Pt. Oxygen reduction on G‐Cys‐Au@Pt occurs at 25 mV lower potential and 43 A gPt?1 higher current (at 0.9 V vs reversible hydrogen electrode) than for C–Pt. Functional tests in direct fomic acid, methanol and ethanol fuel cells exhibit 95%, 53%, and 107% increased power densities for G‐Cys‐Au@Pt over C–Pt, respectively.  相似文献   

20.
By employing in situ reduction of metal precursor and metal‐assisted carbon etching process, this study achieves a series of ultrafine transition metal‐based nanoparticles (Ni–Fe, Ni–Mo) embedded in N‐doped carbon, which are found efficient catalysts for electrolytic water splitting. The as‐prepared hybrid materials demonstrate outstanding catalytic activities as non‐noble metal electrodes rendered by the synergistic effect of bimetal elements and N‐dopants, the improved electrical conductivity, and hydrophilism. Ni/Mo2C@N‐doped porous carbon (NiMo‐polyvinylpyrrolidone (PVP)) and NiFe@N‐doped carbon (NiFe‐PVP) produce low overpotentials of 130 and 297 mV at a current density of 10 mA cm?2 as catalysts for hydrogen evolution reaction and oxygen evolution reaction, respectively. In addition, these binder‐free electrodes show long‐term stability. Overall water splitting is also demonstrated based on the couple of NiMo‐PVP||NiFe‐PVP catalyzer. This represents a simple and effective synthesis method toward a new type of nanometal–carbon hybrid electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号