首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The effects of alkyl chain regiochemistry on the properties of donor polymers and performances of non‐fullerene organic solar cells are investigated. Two donor polymers (PfBTAZ and PfBTAZS) are compared that have nearly identical chemical structures except for the regiochemistry of alkyl chains. The optical properties and crystallinity of two polymers are nearly identical yet the PfBTAZ:O‐IDTBR blend exhibits nearly double domain size compared to the blend based on PfBTAZS:O‐IDTBR. To reveal the origins of the very different domain size of two blends, the morphology of neat polymer films is characterized, and it is found that PfBTAZ tends to aggregate into much larger polymer fibers without the presence of O‐IDTBR. This indicates that it is not the polymer:O‐IDTBR interactions but the intrinsic aggregation properties of two polymers that determine the morphology features of neat and blend films. The stronger aggregation tendency of PfBTAZ could be explained by its more co‐planar geometry of the polymer backbone arising from the different alkyl chain regiochemistry. Combined with the similar trend observed in another set of donor polymers (PTFB‐P and PTFB‐PS), the results provide an important understanding of the structure–property relationships that could guide the development of donor polymers for non‐fullerene organic solar cells.  相似文献   

2.
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules ( DTS(Oct)2‐(2T‐DCV‐Me)2 and DTS(Oct)2‐(2T‐DCV‐Hex)2 ) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2 (a solubility of 5 mg mL?1) system exhibits both high short circuit current density (J sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2 (a solubility of 24 mg mL?1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2 system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2 in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.  相似文献   

3.
    
Tuning the morphology through processing additives represents one of the most promising strategies to boost the performance of organic solar cells (OSCs). However, it remains unclear how oligothiophene-based solid additives influence the molecular packing and performance of OSCs. Here, two additives namely 2T and 4T, are introduced into state-of-the-art PM6:Y6-based OSCs to understand how they influence the film formation process, nanoscale morphology, and the photovoltaic performance. It is found that the 2T additive can improve the molecular packing of both donor polymer and non-fullerene acceptor, resulting in lower Urbach energy and reduced energy loss. Furthermore, the blend film with 2T treatment displays enhanced domain purity and a more favorable distribution of the acceptor and donor materials in the vertical direction, which can enhance charge extraction efficiency while simultaneously suppressing charge recombination. Consequently, OSCs processed with 2T additive realize a promising efficiency of 18.1% for PM6:Y6-based devices. Furthermore, the general applicability of the additive is demonstrated, and an impressive efficiency of 18.6% for PM6:L8-BO-based OSCs is achieved. These findings highlight that the uncomplicated oligothiophenes have excellent potential in fine-adjustment of the active layer morphology, which is crucial for the future development of OSCs.  相似文献   

4.
5.
    
The device performance of organic polymer:fullerene bulk heterojunction solar cells strongly depends on the interpenetrating network of the involved donor and acceptor materials in the active layer. Since morphology formation depends on the conditions of film preparation, the final morphology varies for different deposition methods. In order to understand and optimize industrial coating processes and, therefore, the performance of the solar cells produced, a deeper understanding of structure formation is important. In situ measurements of slot‐die printed polymer:fullerene active layers are presented that reveal insights into the evolution of the structure. Polymer crystallization and ordering is monitored by in situ grazing incidence wide angle X‐ray scattering (GIWAXS), and in situ grazing incidence small‐angle X‐ray scattering (GISAXS). The development of the morphology exhibits five stages independent of the drying conditions. Two growth rates are observed, an initial slow formation of poly(3‐hexylthiophene‐2,5‐diyl) crystallites in well‐aligned edge‐on orientation followed by a rapid crystal growth. By combining the GIWAXS and GISAXS measurements, a five‐stage growth and assembly process is found and described in detail along with a proposed model of the structural evolution. The findings are an important step in tailoring the assembly process.  相似文献   

6.
7.
    
Currently, constructing ternary organic solar cells (OSCs) and developing nonfullerene small molecule acceptors (n‐SMAs) are two pivotal avenues to enhance the device performance. However, introducing n‐SMAs into the ternary OSCs to construct thick layer device is still a challenge due to their inferior charge transport property and unclear aggregation mechanism. In this work, a novel wide band gap copolymer 4,8‐bis(4,5‐dioctylthiophen‐2‐yl) benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐N‐(2‐hexyldecyl)‐5,5′‐bis(thiophen‐2‐yl)‐2,2′‐bithiophene‐3,3′‐dicarboximide (PDOT) is designed and blend of PDOT:PC71BM achieves a power conversion efficiency (PCE) of 9.5% with active layer thickness over 200 nm. The rationally selected n‐SMA based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene) malononitrile groups (ITIC) is introduced into the host binary PDOT:PC71BM system to extend the absorption range and reduce the photo energy loss. After fully investigating the morphology evolution of the ternary blends, the different aggregation behavior of n‐SMAs with respect to their fullerene counterpart is revealed and the adverse effect of introducing n‐SMAs on charge transport is successfully avoided. The ternary OSC delivers a PCE of 11.2% with a 230 nm thick active layer, which is among the highest efficiencies of thick layer OSCs. The results demonstrate the feasibility of using n‐SMAs to construct a thick layer ternary device for the first time, which will greatly promote the efficiency of thick layer ternary devices.  相似文献   

8.
The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2 :PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2 /PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy‐filtered transmission energy microscopy (EF‐TEM), resonant soft X‐ray scattering (R‐SoXS) and grazing incidence wide angle X‐ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R‐SoXS and EF‐TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes.  相似文献   

9.
The performance of organic photovoltaic cells (OPVCs) shows a critical dependence on morphology and structure of the active layers. In small molecule donor/acceptor (D/A) cells fabrication parameters, like substrate temperature and evaporation rate, play a significant role for crystallization and roughening of the film. In particular, the fraction of mixed material at the interface between donor and acceptor is highly relevant for device performance. While an ideal planar heterojunction (PHJ) exhibits the smallest possible interface area resulting in suppressed recombination losses, mixed layers suffer strongly from recombination but show higher exciton dissociation efficiencies. In this study we investigate PHJ and planar‐mixed heterojunction (PM‐HJ) solar cells based on diindenoperylene (DIP) as donor and C60 as acceptor, fabricated under different growth conditions. Grazing incidence small angle X‐ray scattering (GISAXS), X‐ray reflectometry (XRR) and atomic force microscopy (AFM) are used to obtain detailed information about in‐ and out‐of‐plane structures and topography. In that way we find that surface and bulk domain distances are correlated in size for PHJs, while PM‐HJs show no correlation at all. The resulting solar cell characteristics are strongly affected by the morphology, as reorganizations in structure correlate with changes in the solar cell performance.  相似文献   

10.
Solid films of a water‐soluble dicationic perylene diimide salt, perylene bis(2‐ethyltrimethylammonium hydroxide imide), Petma+OH?, are strongly doped n‐type by dehydration and reversibly de‐doped by hydration. The hydrated films consist almost entirely of the neutral perylene diimide, PDI, while the dehydrated films contain ~50% PDI anions. The conductivity increases by five orders of magnitude upon dehydration, probably limited by film roughness, while the work function decreases by 0.74 V, consistent with an n‐type doping density increase of ~12 orders of magnitude. Remarkably, the PDI anions are stable in dry air up to 120 °C. The work function of the doped film, ? (3.96 V vs. vacuum), is unusually negative for an O2‐stable contact. Petma+OH? is also characterized as an interfacial layer, IFL, in two different types of organic photovoltaic cells. Results are comparable to state of the art cesium carbonate IFLs, but may improve if film morphology can be better controlled. The films are stable and reversible over many months in air and light. The mechanism of this unusual self‐doping process may involve the change in relative potentials of the ions in the film caused by their deshielding and compaction as water is removed, leading to charge transfer when dry.  相似文献   

11.
    
Perovskite solar cells (PSCs) have reached a certified 25.2% efficiency in 2019 due to their high absorption coefficient, high carrier mobility, long diffusion length, and tunable direct bandgap. However, due to the nature of solution processing and rapid crystal growth of perovskite thin films, a variety of defects can form as a result of the precursor compositions and processing conditions. The use of additives can affect perovskite crystallization and film formation, defect passivation in the bulk and/or at the surface, as well as influence the interface tuning of structure and energetics. Here, recent progress in additive engineering during perovskite film formation is discussed according to the following common categories: Lewis acid (e.g., metal cations, fullerene derivatives), Lewis base based on the donor type (e.g., O‐donor, S‐donor, and N‐donor), ammonium salts, low‐dimensional perovskites, and ionic liquid. Various additive‐assisted strategies for interface optimization are then summarized; additives include modifiers to improve electron‐ and hole‐transport layers as well as those to modify perovskite surface properties. Finally, an outlook is provided on research trends with respect to additive engineering in PSC development.  相似文献   

12.
    
Ternary strategies show over 16% efficiencies with increased current/voltage owing to complementary absorption/aligned energy level contributions. However, poor understanding of how the guest components tune the active layer structures still makes rational selection of material systems challenging. In this study, two phthalimide based ultrawide bandgap polymer donor guests are synthesized. Parallel energies between the highest occupied molecular orbitals of host and guest polymers are achieved via incorporating selnophene on the guest polymer. Solid‐state 19F magic angle spinning nuclear magnetic spectroscopy, graze‐incidence wide‐angle X‐ray diffraction, elemental transmission electron microscopy mapping, and transient absorption spectroscopy are combined to characterize the active layer structures. Formation of the individual guest phases selectively improves the structural order of donor and acceptor phase. The increased electron mobility in combination with the presence of the additional paths made by the guest not only minimizes the influence on charge generation and transport of the host system but also contributes to increasing the overall current generation. Therefore, phthalimide based polymers can be potential candidates that enable the simultaneous increase of open‐circuit voltage and short‐circuit current‐density via fine‐tuning energy levels and the formation of additional paths for enhancing current generation in parallel‐like multicomponent organic solar cells.  相似文献   

13.
    
The thin film deposition engineering of layer-by-layer (LbL) non-fullerene organic solar cells (OSCs) favors vertical phase distributions of donor:acceptor (D:A), effectively boosting the power conversion efficiency (PCE). However, previous deposition strategies mainly aimed at optimizing the morphology of LbL films, and paid limited attention to the reproducibility of device performance. To achieve high device performance and maintain reproducibility, a strategy for hierarchical morphology manipulation in LbL OSCs is developed. A series of LbL devices are fabricated by introducing vacuum-assisted molecular drift treatment (VMDT) to the donor or acceptor layer individually or simultaneously to elucidate the functionalities of this treatment. Essentially, the VMDT provides an extended drift driving force to manipulate the donor and acceptor molecules, resulting in a well-defined vertical phase distribution and ordered molecular packing. These enhancements facilitate improvement in the D:A interface area and charge transport channel, ultimately contributing to impressive PCEs of 19.18% from 18.27% in the LbL devices. More importantly, using VMDT overcomes the notorious batch-dependent and heat treatment degradation issues of OSCs, leading to excellent batch-to-batch reproducibility and enhanced stability of the devices. This reported method provides a promising strategy available for industrial and laboratory use to controllably manipulate the morphology of LbL OSCs.  相似文献   

14.
15.
Understanding the morphology of polymer‐based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low‐bandgap silole‐containing conjugated polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b;2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (PSBTBT) with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the “As‐Spun”, “Pre‐Annealed”, and “Post‐Annealed” films were studied by scanning force microscopy, contact angle measurements, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the “As‐Spun” films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing‐incidence X‐ray diffraction and small‐angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains ~10 nm in size, leading to an improvement in photovoltaic performance.  相似文献   

16.
The complex microstructure of organic semiconductor mixtures continues to obscure the connection between the active layer morphology and photovoltaic device performance. For example, the ubiquitous presence of mixed phases in the active layer of polymer/fullerene solar cells creates multiple morphologically distinct interfaces which are capable of exciton dissociation or charge recombination. Here, it is shown that domain compositions and fullerene aggregation can strongly modulate charge photogeneration at ultrafast timescales through studies of a model system, mixtures of a low band‐gap polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]germole)‐2,6‐diyl‐alt‐(2,1,3‐benzothia‐diazole)‐4,7‐diyl], and [6,6]‐phenyl‐C71‐butyric acid methyl ester. Structural characterization using energy‐filtered transmission electron microscopy (EFTEM) and resonant soft X‐ray scattering shows similar microstructures even with changes in the overall film composition. Composition maps generated from EFTEM, however, demonstrate that compositions of mixed domains vary significantly with overall film composition. Furthermore, the amount of polymer in the mixed domains is inversely correlated with device performance. Photoinduced absorption studies using ultrafast infrared spectroscopy demonstrate that polaron concentrations are highest when mixed domains contain the least polymer. Grazing‐incidence X‐ray scattering results show that larger fullerene coherence lengths are correlated to higher polaron yields. Thus, the purity of the mixed domains is critical for efficient charge photogeneration because purity modulates fullerene aggregation and electron delocalization.  相似文献   

17.
Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short‐circuit currents (JSC) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open‐circuit voltages (VOC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl‐C61‐butyric acid methyl ester (PC61BM), that achieves a high VOC (0.9 V) with very low energy losses (Eloss = 0.52 eV) from the energy of absorbed photons, a respectable JSC (13 mA cm?2), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field‐dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge‐carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the JSC, VOC, and FF can all be improved, even with very low energetic offsets.  相似文献   

18.
19.
    
Long device lifetime is still a missing key requirement in the commercialization of nonfullerene acceptor (NFA) organic solar cell technology. Understanding thermodynamic factors driving morphology degradation or stabilization is correspondingly lacking. In this report, thermodynamics is combined with morphology to elucidate the instability of highly efficient PTB7‐Th:IEICO‐4F binary solar cells and to rationally use PC71BM in ternary solar cells to reduce the loss in the power conversion efficiency from ≈35% to <10% after storage for 90 days and at the same time improve performance. The hypomiscibility observed for IEICO‐4F in PTB7‐Th (below the percolation threshold) leads to overpurification of the mixed domains. By contrast, the hypermiscibility of PC71BM in PTB7‐Th of 48 vol% is well above the percolation threshold. At the same time, PC71BM is partly miscible in IEICO‐4F suppressing crystallization of IEICO‐4F. This work systematically illustrates the origin of the intrinsic degradation of PTB7‐Th:IEICO‐4F binary solar cells, demonstrates the structure–function relations among thermodynamics, morphology, and photovoltaic performance, and finally carries out a rational strategy to suppress the degradation: the third component needs to have a miscibility in the donor polymer at or above the percolation threshold, yet also needs to be partly miscible with the crystallizable acceptor.  相似文献   

20.
A variety of measurement techniques including photothermal deflection spectroscopy (PDS), auger electron spectroscopy (AES), (sub–bandgap) external quantum efficiency (EQE), and impedance spectroscopy are applied to poly[N‐900‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(40,70‐di‐2‐thienyl‐20,10,30‐benzothiadiazole (PCDTBT)/[6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) films and devices to probe the stability under thermal annealing. Upon annealing, solar cell performance is drastically decreased for temperatures higher than 140 °C. Detailed investigation indicate changes in polymer:fullerene interactions resulting in the formation of a polymer wetting layer upon annealing at temperatures higher than 140 °C. Upon device completion this wetting layer is located close to the metal electrode and therefore leads to an increase in recombination and a decrease in charge carrier extraction, providing an explanation for the reduced fill factor (FF) and power conversion efficiency (PCE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号