首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the demonstrated power conversion efficiency of organic photovoltaics (OPVs) now exceeds 10%, new design rules are required to tailor interfaces at the molecular level for optimal exciton dissociation and charge transport in higher efficiency devices. We show that molecular shape‐complementarity between donors and acceptors can drive performance in OPV devices. Using core hole clock (CHC) X‐ray spectroscopy and density functional theory (DFT), we compare the electronic coupling, assembly, and charge transfer rates at the interface between C60 acceptors and flat‐ or contorted‐hexabenzocorone (HBC) donors. The HBC donors have similar optoelectronic properties but differ in molecular contortion and shape matching to the fullerene acceptors. We show that shape‐complementarity drives self‐assembly of an intermixed morphology with a donor/acceptor (D/A) ball‐and‐socket interface, which enables faster electron transfer from HBC to C60. The supramolecular assembly and faster electron transfer rates in the shape complementary heterojunction lead to a larger active volume and enhanced exciton dissociation rate. This work provides fundamental mechanistic insights on the improved efficiency of organic photovoltaic devices that incorporate these concave/convex D/A materials.  相似文献   

2.
A power conversion efficiency (PCE) of 16.2% is achieved in PM6:BTP‐4F‐12 based organic photovoltaics (OPVs). On the basis of efficient binary OPVs, a series of ternary OPVs are constructed by incorporating MeIC as the third component. The open circuit voltages (VOCs) of ternary OPVs can be gradually increased along with the incorporation of MeIC, suggesting the formation of an alloy state between BTP‐4F‐12 and MeIC with good compatibility. The energy loss (Eloss) of ternary OPVs can be decreased compared with that of two binary OPVs, contributing to the VOC improvement of ternary OPVs. The short circuit current density (JSC) and fill factor (FF) of ternary OPVs can also be simultaneously enhanced with MeIC content up to 10 wt% in acceptors, leading to 17.4% PCE of the optimized ternary OPVs. The JSC and FF improvement of ternary OPVs is thought to result from the optimized ternary active layers with more efficient photon harvesting, exciton dissociation and charge transport. The 17.4% PCE and 79.2% FF is among the top values of ternary OPVs. This work indicates that a ternary strategy is an emerging method to simultaneously minimize Eloss and optimize photon harvesting as well as improve the morphology of active layers for realizing performance improvement for OPVs.  相似文献   

3.
The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge‐transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near‐ultraviolet‐harvesting OPVs—has largely not been investigated. Here, aggregation‐induced room‐temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open‐circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy‐band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next‐generation active materials and films for near‐ultraviolet OPVs with open‐circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy‐atom‐containing active materials. Molecular aggregation through thin‐film processing provides an alternative route to accessing 100% triplet states on photoexcitation.  相似文献   

4.
Nanofibers consisting of the bulk heterojunction organic photovoltaic (BHJ–OPV) electron donor–electron acceptor pair poly(3‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) are produced through a coaxial electrospinning process. While P3HT:PCBM blends are not directly electrospinnable, P3HT:PCBM‐containing fibers are produced in a coaxial fashion by utilizing polycaprolactone (PCL) as an electrospinnable sheath material. Pure P3HT:PCBM fibers are easily obtained after electrospinning by selectively removing the PCL sheath with cyclopentanone (average diameter 120 ± 30 nm). These fibers are then incorporated into the active layer of a BHJ–OPV device, which results in improved short‐circuit current densities, fill factors, and power‐conversion efficiencies (PCE) as compared to thin‐film devices of identical chemical composition. The best‐performing fiber‐based devices exhibit a PCE of 4.0%, while the best thin‐film devices have a PCE of 3.2%. This increase in device performance is attributed to the increased in‐plane alignment of P3HT polymer chains on the nanoscale, caused by the electrospun fibers, which leads to increased optical absorption and subsequent exciton generation. This methodology for improving device performance of BHJ–OPVs could also be implemented for other electron donor–electron acceptor systems, as nanofiber formation is largely independent of the PV material.  相似文献   

5.
Ternary blend approaches are demonstrated as a universal means to improve overall performance of organic photovoltaics (OPVs) in both indoor and outdoor conditions. A comparative study on two donors:one acceptor (2D:1A) and one donor:two acceptors (1D:2A) ternary blends shows that both approaches are universally effective for indoor and outdoor operation; the 1D:2A devices incorporating a nonfullerene acceptor (NFA) benefit from less charge recombination and higher power conversion efficiencies (PCEs) for various irradiation conditions, while the performance of the 2D:1A blends depends on the emission spectrum of the incident light source. The synergistic merits of NFAs and ternary structure in the 1D:2A ternary OPVs secure better performance and generality regardless of the incident lighting. A combination of experimental and theoretical analyses unveils that NFAs optimize packing and arrangement of molecules to build efficient cascade ternary junctions in the 1D:2A blends, which can be important design guidelines for the third component in ternary OPVs. The optimized 1D:2A ternary OPV exhibits a new record PCE of 25.6% under a 200 lux light‐emitting diode (LED) and 26.4% under a 1000 lux LED, and superior durability under industrial relevant thermal stress, suggesting new opportunities in diverse practical applications challenging the currently dominant PV technologies.  相似文献   

6.
Two n‐type organic semiconductor (n‐OS) small molecules m‐ITIC‐2F and m‐ITIC‐4F with fluorinated 2‐(2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)propanedinitrile (IC) terminal moieties are prepared, for the application as an acceptor in polymer solar cells (PSCs), to further improve the photovoltaic performance of the n‐OS acceptor 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene) indanone) ‐5,5,11,11‐tetrakis(3‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]‐dithiophene (m‐ITIC). Compared to m‐ITIC, these two new acceptors show redshifted absorption, higher molecular packing order, and improved electron mobilities. The power conversion efficiencies (PCE) of the as‐cast PSCs with m‐ITIC‐2F or m‐ITIC‐4F as an acceptor and a low‐cost donor–acceptor (D–A) copolymer PTQ10 as a donor reach 11.57% and 11.64%, respectively, which are among the highest efficiency for the as‐cast PSCs so far. Furthermore, after thermal annealing treatment, improved molecular packing and enhanced phase separation are observed, and the higher PCE of 12.53% is achieved for both PSCs based on the two acceptors. The respective and unique advantage with the intrinsic high degree of order, molecular packing, and electron mobilities of these two acceptors will be suitable to match with different p‐type organic semiconductor donors for higher PCE values, which provide a great potential for the PSCs commercialization in the near future. These results indicate that rational molecular structure optimization is of great importance to further improve photovoltaic properties of the photovoltaic materials.  相似文献   

7.
A series of narrow‐bandgap π‐conjugated oligomers based on diketopyrrolopyrrole chromophoric units coupled with benzodithiophene, indacenodithiophene, thiophene, and isoindigo cores are designed and synthesized for application as donor materials in solution‐processed small‐molecule organic solar cells. The impacts of these different central cores on the optoelectronic and morphological properties, carrier mobility, and photovoltaic performance are investigated. These π‐extended oligomers possess broad and intense optical absorption covering the range from 550 to 750 nm, narrow optical bandgaps of 1.52–1.69 eV, and relatively low‐lying highest occupied molecular orbital (HOMO) energy levels ranging from ?5.24 to ?5.46 eV in their thin films. A high power conversion efficiency of 5.9% under simulated AM 1.5G illumination is achieved for inverted organic solar cells based on a small‐molecule bulk‐heterojunction system consisting of a benzodithiophene‐diketopyrrolopyrrole‐containing oligomer as a donor and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as an acceptor. Transmission electron microscopy and energy‐dispersive X‐ray spectroscopy reveal that interpenetrating and interconnected donor/acceptor domains with pronounced mesoscopic phase segregation are formed within the photoactive binary blends, which is ideal for efficient exciton dissociation and charge transport in the bulk‐heterojunction devices.  相似文献   

8.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

9.
Material properties in polymer and fullerene bulk heterojunctions (BHJs) such as donor to acceptor volume fraction, morphology, and molecular orientation critically influence light absorption, exciton dissociation, charge transport, and recombination, all of which are crucial device properties in organic photovoltaics (OPV). Spatial variation of BHJ properties normal to the substrate, caused by phase segregation, can thereby create corresponding spatial variations in the OPVs optoelectronic properties. Here, normally incident and wave‐guided optical modes are used to selectively excite localized regions within an inverted poly(3‐hexythiophene‐2,5‐diyl) and phenyl‐C61‐butyric acid methyl ester BHJ OPV and corresponding internal quantum efficiencies are measured to study the spatial‐dependent charge carrier collection probability within the BHJ. An electron‐limited charge collection profile is observed for a thick (920 nm) BHJ due to fullerene‐poor regions as a result of phase segregation. As the thickness of the BHJ is reduced (100 nm), charge transport is seen to be unaffected by the phase segregation. This has the potential to be a versatile non‐destructive characterization technique for measuring the spatially varying charge collection probability in thin film photovoltaics and will help enable optimum device design and characterization.  相似文献   

10.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

11.
Donor–acceptor (D‐A) type π‐conjugated copolymers with crystalline behavior have been extensively investigated as donor semiconductors in organic photovoltaics (OPVs). On the other hand, the development of high‐performance amorphous donor materials is still behind. The amorphous donor copolymer DTS‐C0(F2) consisting of dithieno[3,2‐b:2′,3′‐d]silole ( DTS ) donor unit and the recently developed fluorine‐substituted naphtho[2,3‐c]thiophene‐4,9‐dione ( C0(F2) ) acceptor unit shows moderate photovoltaic performance upon blending with PC71BM. In this work, to enhance the hole‐transporting characteristics, a 3‐hexylthiophene ( HT ) spacer unit is integrated into the conjugated backbone, resulting in a new amorphous copolymer DTS‐HT‐C0(F2) . The strong electron‐accepting nature of C0(F2) allows the introduction of the HT spacer without affecting the frontier orbital energies and thus the D‐A character. Without using solvent additives and thermal annealing, OPVs based on DTS‐HT‐C0(F2) and [6,6]‐phenyl‐C71‐butyric acid methyl ester PC71BM show an improved power conversion efficiency of 9.12%. Investigation of the device physics unambiguously reveals that the hole mobility of the copolymer in the blend is increased by an order of magnitude by the introduction of HT , while keeping an amorphous film nature, leading to higher short‐circuit current density and fill factor. These results demonstrate the realization of high‐performance OPVs based on amorphous active layers.  相似文献   

12.
Three vacuum‐deposited donor–acceptor–acceptor (d–a–a') small molecule donors are studied with different side chains attached to an asymmetric heterotetracene donor block for use in high efficiency organic photovoltaics (OPVs). The donor with an isobutyl side chain yields the highest crystal packing density compared to molecules with 2‐ethylhexyl or n‐butyl chains, leading to the largest absorption coefficient and short circuit current in an OPV. It also exhibits a higher fill factor, consistent with its preferred out‐of‐plane molecular π–π stacking arrangement that facilitates charge transport in the direction perpendicular to the substrate. A power conversion efficiency of 9.3 ± 0.5% is achieved under 1 sun intensity, AM 1.5 G simulated solar illumination, which is significantly higher than 7.5 ± 0.4% of the other two molecules. These results indicate that side chain modification of d–a–a' small molecules offers an effective approach to control the crystal packing configuration, thereby improving the device performance.  相似文献   

13.
Fullerene‐based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene‐based donor and rylene diimide‐based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct‐contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.  相似文献   

14.
Although high power conversion efficiency of over 14% has been achieved using nonfullerene acceptors (NFAs) in organic photovoltaics (OPVs), securing their insensitive device performance to the thickness of the photoactive layer remains an indispensable requirement for their successful commercialization via printing technologies. In this study, by synthesizing a new series of ITIC‐based NFAs having alkyl or alkoxy groups, it is found that the bulk heterojunction morphology dependence on the thickness of the photoactive layer becomes more severe as the difference in the surface energy of the donor and acceptor increases. It is believed that this observation is the origin that yields the device performance dependence on the thickness of the photoactive layer. Through sensitive control of the surface energy of these ITIC‐based NFAs, it is demonstrated that thickness‐insensitive OPVs can be achieved even using a doctor blade technique under air without using any additives. It is believed that present approach provides an important insight into the design of photoactive materials and morphology control for the printable OPVs using NFAs.  相似文献   

15.
Current research indicates that exciton dissociation into free charge carriers can be achieved in material combinations with the highest occupied molecular orbital (HOMO) offset lowered to 0 eV in non‐fullerene organic solar cells. However, the quantitative relationship between the HOMO offset and exciton dissociation has not been established because of the difficulty in achieving continuously tunable HOMO offsets. Here, the binary blends of PTQ10:ZITI‐S and PTQ10:ZITI‐N are combined to form the positive and negative HOMO offsets of 0.20 and ?0.07 eV, respectively. While the PTQ10:ZITI‐S binary blend delivers a decent power conversion efficiency (PCE) of 10.69% with a short‐circuit current (Jsc) of 16.94 mA cm?2, the PTQ10:ZITI‐N with the negative offset shows a much lower PCE of 7.06% mainly because of the low Jsc of 12.03 mA cm?2. Because the tunable HOMO levels can be realized in organic semiconducting alloys based on ZITI‐N and ZITI‐S acceptors, the transformation of the HOMO energy offset from negative to positive values is achieved in the PTQ10:ZITIN:ZITI‐S ternary blends, delivering much‐improved PCEs up to 13.26% with a significant, 74% enhancement of Jsc to 20.93 mA cm?2. With detailed investigations, the study reveals that the minimum HOMO offset of ≈40 meV is required to achieve the most‐efficient exciton dissociation and photovoltaic performance.  相似文献   

16.
A new series of organic salts with selective near‐infrared (NIR) harvesting to 950 nm is reported, and anion selection and blending is demonstrated to allow for fine tuning of the open‐circuit voltage. Extending photoresponse deeper into the NIR is a significant challenge facing small molecule organic photovoltaics, and recent demonstrations have been limited by open‐circuit voltages much lower than the theoretical and practical limits. This work presents molecular design strategies that enable facile tuning of energy level alignment and open‐circuit voltages in organic salt‐based photovoltaics. Anions are also shown to have a strong influence on exciton diffusion length. These insights provide a clear route toward achieving high efficiency transparent and panchromatic photovoltaics, and open up design opportunities to rapidly tailor molecules for new donor–acceptor systems.  相似文献   

17.
Three small molecules with different substituents on bithienyl‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) units, BDTT‐TR (meta‐alkyl side chain), BDTT‐O‐TR (meta‐alkoxy), and BDTT‐S‐TR (meta‐alkylthio), are designed and synthesized for systematically elucidating their structure–property relationship in solution‐processed bulk heterojunction organic solar cells. Although all three molecules show similar molecular structures, thermal properties and optical band gaps, the introduction of meta‐alkylthio‐BDTT as the central unit in the molecular backbone substantially results in a higher absorption coefficient, slightly lower highest occupied molecular orbital level and significantly more efficient and balanced charge transport property. The bridging atom in the meta‐position to the side chain is found to impact the microstructure formation which is a subtle but decisive way: carrier recombination is suppressed due to a more balanced carrier mobility and BDTT based devices with the meta‐alkylthio side chain (BDTT‐S‐TR) show a higher power conversion efficiency (PCE of 9.20%) as compared to the meta‐alkoxy (PCE of 7.44% for BDTT‐TR) and meta‐alkyl spacer (PCE of 6.50% for BDTT‐O‐TR). Density functional density calculations suggest only small variations in the torsion angle of the side chains, but the nature of the side chain linkage is further found to impact the thermal as well as the photostability of corresponding devices. The aim is to provide comprehensive insight into fine‐tuning the structure–property interrelationship of the BDTT material class as a function of side chain engineering.  相似文献   

18.
19.
The thin film deposition engineering of layer-by-layer (LbL) non-fullerene organic solar cells (OSCs) favors vertical phase distributions of donor:acceptor (D:A), effectively boosting the power conversion efficiency (PCE). However, previous deposition strategies mainly aimed at optimizing the morphology of LbL films, and paid limited attention to the reproducibility of device performance. To achieve high device performance and maintain reproducibility, a strategy for hierarchical morphology manipulation in LbL OSCs is developed. A series of LbL devices are fabricated by introducing vacuum-assisted molecular drift treatment (VMDT) to the donor or acceptor layer individually or simultaneously to elucidate the functionalities of this treatment. Essentially, the VMDT provides an extended drift driving force to manipulate the donor and acceptor molecules, resulting in a well-defined vertical phase distribution and ordered molecular packing. These enhancements facilitate improvement in the D:A interface area and charge transport channel, ultimately contributing to impressive PCEs of 19.18% from 18.27% in the LbL devices. More importantly, using VMDT overcomes the notorious batch-dependent and heat treatment degradation issues of OSCs, leading to excellent batch-to-batch reproducibility and enhanced stability of the devices. This reported method provides a promising strategy available for industrial and laboratory use to controllably manipulate the morphology of LbL OSCs.  相似文献   

20.
Three new thieno[3,2‐b][1]benzothiophene ( TBT )‐based donor–π–acceptor (D–π–A) sensitizers, coded as SGT ‐ 121 , SGT ‐ 129 , and SGT ‐ 130 , have been designed and synthesized for dye‐sensitized solar cells (DSSCs), for the first time. The TBT , prepared by fusing thiophene unit with the phenyl unit of triphenylamine donor, is utilized as the π‐bridge for all sensitizers with good planarity. They have been molecularly engineered to regulate the highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy levels and extend absorption range as well as to control the electron‐transfer process that can ensure efficient dye regeneration and prevent undesired electron recombination. The photovoltaic performance of SGT‐sensitizer‐based DSSCs employing Co(bpy)32+/3+ (bpy = 2,2′‐bipyridine) redox couple is systematically evaluated in a thorough comparison with Y123 as a reference sensitizer. Among them, SGT ‐ 130 with benzothiadiazole‐phenyl ( BTD ‐ P ) unit as an auxiliary acceptor exhibits the highest power‐conversion efficiency (PCE) of 10.47% with Jsc = 16.77 mA cm?2, Voc = 851 mV, and FF = 73.34%, whose PCE is much higher than that of Y123 (9.5%). It is demonstrated that the molecular combination of each fragment in D–π–A organic sensitizers can be a pivotal factor for achieving the higher PCEs and an innovative strategy for strengthening the drawbacks of the π‐bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号