首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution‐processed small molecule (SM) solar cells have the prospect to outperform their polymer‐fullerene counterparts. Considering that both SM donors/acceptors absorb in visible spectral range, higher expected photocurrents should in principle translate into higher power conversion efficiencies (PCEs). However, limited bulk‐heterojunction (BHJ) charge carrier mobility (<10‐4 cm2 V‐1 s‐1) and carrier lifetimes (<1 µs) often impose active layer thickness constraints on BHJ devices (≈100 nm), limiting external quantum efficiencies (EQEs) and photocurrent, and making large‐scale processing techniques particularly challenging. In this report, it is shown that ternary BHJs composed of the SM donor DR3TBDTT (DR3), the SM acceptor ICC6 and the fullerene acceptor PC71BM can be used to achieve SM‐based ternary BHJ solar cells with active layer thicknesses >200 nm and PCEs nearing 11%. The examinations show that these remarkable figures are the result of i) significantly improved electron mobility (8.2 × 10‐4 cm2 V‐1 s‐1), ii) longer carrier lifetimes (2.4 µs), and iii) reduced geminate recombination within BHJ active layers to which PC71BM has been added as ternary component. Optically thick (up to ≈500 nm) devices are shown to maintain PCEs >8%, and optimized DR3:ICC6:PC71BM solar cells demonstrate long‐term shelf stability (dark) for >1000 h, in 55% humidity air environment.  相似文献   

2.
The effects of solvent additive (1,8‐diiodooctane (DIO)) on the morphology, charge generation, transport, and recombination in solution‐processed small‐molecule solar cells are studied and these parameters are correlated with device performance. In the optimum nanoscale morphology, which is processed with 0.4% DIO, the phase separation is large enough to create a percolating pathway for carrier transport, yet still small enough to form large interfacial area for efficient charge separation. Complete phase separation in this film reduces the interfacial defects, which occurs without DIO, and hence suppresses the monomolecular recombination. Moreover, balanced charge transport and weak bimolecular recombination lead to a high fill factor (72%). On the other hand, an excess amount of DIO (0.8%) in the solvent results in the over‐aggregation of the donor phase, which disturbs the percolating pathway of the acceptor phase and reduces the electron mobility. The over‐aggregation of the donor phase also shrinks the interfacial area for charge separation and consequently reduces the photocurrent generation.  相似文献   

3.
The light intensity dependence of the main photoelectrical parameters of the nonfullerene small‐molecule bulk heterojunction (BHJ) solar cells p‐DTS(FBTTh2)2:perylene diimide (T1:PDI) shows that the nongeminate recombination losses play an important role in this system. A simple approach for the quantitative analysis of capacitance spectroscopy data of the organic BHJ solar cells, which allows to determine the density of free charge carriers as a function of applied bias under standard working conditions, is demonstrated. Using the proposed capacitance spectroscopic technique, the nongeminate recombination losses in the T1:PDI solar cells are quantitatively characterized in the scope of the bimolecular‐ and trap‐assisted recombination mechanisms. Their contributions are separately analyzed within a wide range of the applied bias.  相似文献   

4.
In this study, a comprehensive analytical model to quantify the total nongeminate recombination losses, originating from bimolecular as well as bulk and surface trap‐assisted recombination mechanisms in nonfullerene‐based bulk heterojunction organic solar cells is developed. This proposed model is successfully employed to obtain the different contributions to the recombination current of the investigated solar cells under different illumination intensities. Additionally, the model quantitatively describes the experimentally measured open‐circuit voltage versus light intensity dependence. Most importantly, it is possible to calculate the experimental results with the same fitting parameter values from the presented model. The validity of this model is also proven by a combination of other independent, steady‐state, and transient experimental techniques. This new powerful analytical tool will enable researchers in the photovoltaic community to take into account the synergetic contribution from all relevant types of nongeminate recombination losses in different optoelectronic systems and target their analysis of recombination dynamics at any operating voltage.  相似文献   

5.
Here, it is investigated whether an energetic cascade between mixed and pure regions assists in suppressing recombination losses in non‐fullerene acceptor (NFA)‐based organic solar cells. The impact of polymer‐NFA blend composition upon morphology, energetics, charge carrier recombination kinetics, and photocurrent properties are studied. By changing film composition, morphological structures are varied from consisting of highly intermixed polymer‐NFA phases to consisting of both intermixed and pure phase. Cyclic voltammetry is employed to investigate the impact of blend morphology upon NFA lowest unoccupied molecular orbital (LUMO) level energetics. Transient absorption spectroscopy reveals the importance of an energetic cascade between mixed and pure phases in the electron–hole dynamics in order to well separate spatially localized electron–hole pairs. Raman spectroscopy is used to investigate the origin of energetic shift of NFA LUMO levels. It appears that the increase in NFA electron affinity in pure phases relative to mixed phases is correlated with a transition from a relatively planar backbone structure of NFA in pure, aggregated phases, to a more twisted structure in molecularly mixed phases. The studies focus on addressing whether aggregation‐dependent acceptor LUMO level energetics are a general design requirement for both fullerene and NFAs, and quantifying the magnitude, origin, and impact of such energetic shifts upon device performance.  相似文献   

6.
A nonfullerene acceptor (NFA) with acceptor–donor–acceptor (A–D–A) architecture, i‐IEICO‐2F, based on 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene as an electron‐donating core and 2‐(6‐fluoro‐2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)‐propanedinitrile as electron‐withdrawing end groups, is designed and synthesized. i‐IEICO‐2F has a twist structure in the main conjugated chain, which causes blueshifted absorption and leads to harmonious absorption with a high bandgap donor. The bandgap of i‐IEICO‐2F compliments the bandgap of suitable wide bandgap donor polymers such as J52, leading to complete light absorption throughout the visible spectrum. Devices based on i‐IEICO‐2F exhibit optimized photovoltaic performance including an open‐circuit voltage of 0.93 V, a short‐circuit current density of 16.61 mA cm?2, and a fill factor of 73%, and result in a power conversion efficiency (PCE) of 11.28%. The i‐IEICO‐2F‐based devices reach PCEs of >11% without using any additives or post‐treatments. Devices are found to be thermally stable and maintain 44% of their initial PCE after 184.5 h of continuous thermal annealing (TA) treatment at 150 °C. Based on UV, atomic force microscopy (AFM), and grazing incidence wide angle X‐ray scattering (GIWAXS) results, i‐IEICO‐2F devices show almost identical morphology and molecular orientation throughout the TA treatment and excellent stability compared to other IEICO derivatives.  相似文献   

7.
Reducing energy loss (Eloss) is of critical importance to improving the photovoltaic performance of organic solar cells (OSCs). Although nonradiative recombination ( E loss nonrad ) is investigated in quite a few works, the method for modulating E loss nonrad is seldom reported. Here, a new method of depressing Eloss is reported for nonfullerene OSCs. In addition to ternary‐blend bulk heterojunction (BHJ) solar cells, it is proved that a small molecular material (NRM‐1) can be selectively dispersed into the acceptor phase in the PBDB‐T:IT‐4F‐based OSC, resulting in lower E loss rad and E loss nonrad , and hence a significant improvement in the open‐circuit voltage (VOC); under an optimal feed ratio of NRM‐1, an enhanced power conversion efficiency can also be gained. Moreover, the role of NRM‐1 in the method is illustrated and its applicability for several other representative OSCs is validated. This work paves a new pathway to reduce the Eloss for nonfullerene OSCs.  相似文献   

8.
Symmetry breaking provides a new material design strategy for nonfullerene small molecule acceptors (SMAs). The past 10 years have witnessed significant advances in asymmetric nonfullerene SMAs in organic solar cells (OSCs) with power conversion efficiency (PCE) increasing from ≈1% to ≈14%. In this review, the progress of asymmetric nonfullerene SMAs, including early reports of asymmetric nonfullerene SMAs, asymmetric PDI‐based nonfullerene SMAs, and asymmetric acceptor–donor–acceptor (A–D–A)‐type nonfullerene SMAs, is summarized. The structure–property relationships and the perspectives for future development of asymmetric nonfullerene SMAs are also discussed.  相似文献   

9.
Significant development has been achieved in nonfullerene organic solar cells. However, most of the high‐efficiency nonfullerene systems are composed of polymer donors and fused‐ring acceptors, and only a few small molecule donors can work well. Herein, a new A–D–A small molecule donor named NDTSR with naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) as building blocks is synthesized. Two energy levels well‐matched fused‐ring acceptors ITIC and IDIC are chosen to construct all‐small‐molecule solar cells with NDTSR, respectively. When mixed with IDIC, a high power conversion efficiency (PCE) of 8.05% is achieved, which is the highest efficiency for NDT‐based small molecule donor. However, the NDTSR:ITIC system only exhibits a low PCE of 1.77%. The big difference in the performance of these two systems should be attributed to the different morphology and phase separation resulting from the crystallinity and aggregation ability of the acceptors. The results demonstrate that NDT‐based small molecule is a promising candidate donor for all‐small‐molecule systems, while the crystallinity of fused‐ring acceptors is a critical factor for optimizing the phase separation in the active layer.  相似文献   

10.
Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3‐hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non‐Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10?4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time‐of‐flight measurements reveals a long‐lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness‐independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.  相似文献   

11.
In this contribution, a versatile building block, 3,4‐dicyanothiophene (DCT), which possesses structural simplicity and synthetic accessibility for constructing high‐performance, low‐cost, wide‐bandgap conjugated polymers for use as donors in polymer solar cells (PSCs), is reported. A prototype polymer, PB3TCN‐C66, and its cyano‐free analogue polymer PB3T‐C66, are synthesized to evaluate the potential of using DCT in nonfullerene PSCs. A stronger aggregation property in solution, higher thermal transition temperatures with higher enthalpies, a larger dipole moment, higher relative dielectric constant, and more linear conformation are exhibited by PB3TCN‐C66. Solar cells employing IT‐4F as the electron acceptor offer power conversion efficiencies (PCEs) of 11.2% and 2.3% for PB3TCN‐C66 and PB3T‐C66, respectively. Morphological characterizations reveal that the PB3TCN‐C66:IT‐4F blend exhibits better π–π paracrystallinity, a contracted domain size, and higher phase purity, consistent with its higher molecular interaction parameter, derived from thermodynamic calculations. Moreover, PB3TCN‐C66 offers a higher open‐circuit voltage and reduced energy loss than most state‐of‐the‐art wide‐bandgap polymers, without the need of additional electron‐withdrawing substituents. Two additional polymers derived from DCT also demonstrate promising performance with a higher PCE of 13.4% being achieved. Thus, DCT represents a versatile and promising building block for constructing high‐performance, low‐cost, conjugated polymers for application in PSCs.  相似文献   

12.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

13.
Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices.  相似文献   

14.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

15.
Various substituents have been incorporated into nonfullerene acceptors (NFAs) to modulate absorption scopes and energy levels for boosting efficiencies of organic solar cells (OSCs). The manipulation of the NFAs' molecular order and crystallinity via those substitutions is equally crucial to OSC performances, which yet remains interesting and challenging. The hydroxyl group, which can potentially form strong intermolecular hydrogen bonds (H‐bonds) for improving molecular arrangements, has, however, never been considered. Herein, two hydroxyl‐functionalized NFAs, IT‐OH with one hydroxyl and IT‐DOH with two hydroxyls, are synthesized to tune the molecular packing and crystallinity. The ordered molecular arrangement and higher crystallinity are observed for the IT‐OH and IT‐DOH than the parent ITIC. This is assigned to the formation of intermolecular H‐bonds induced by the hydroxyls, which elongates molecular conjugated planes leading to long‐range‐ordered structures via π–π stacking. By the appropriate crystallinity and miscibility with donor polymer, an IT‐DOH‐based nonannealed OSC affords an efficiency of 12.5% with good device stability. This work provides a promising strategy to tune the molecular packing and crystallinity to design NFAs by introducing hydroxyl groups.  相似文献   

16.
All‐inorganic CsPbIBr2 perovskite solar cells (pero‐SCs) exhibit excellent overall stability, but their power conversion efficiencies (PCEs) are greatly limited by their wide bandgaps. Integrated solar cells (ISCs) are considered to be an emergent technology that could extend their photoresponse by directly stacking two distinct photoactive layers with complementary bandgaps. However, rising photocurrents always sacrifice other photovoltaic parameters, thereby leading to an unsatisfactory PCE. Here, a recast strategy is proposed to optimize the spatial distribution components of low‐bandgap organic bulk‐heterojunction (BHJ) film, and is combined with an all‐inorganic perovskite to construct perovskite/BHJ ISCs. With this strategy, the integrated perovskite/BHJ film with a top‐enriched donor‐material spatial distribution is shown to effectively improve ambipolar charge transport behavior and suppress charge carrier recombination. For the first time, the ISC is not only significantly extended and enhanced the photoresponse achieving a 20% increase in current density, but also exhibits a high open‐circuit voltage and fill factor at the same time. As a result, a record PCE of 11.08% based on CsPbIBr2 pero‐SCs is realized; it simultaneously shows excellent long‐term stability against heat and ultraviolet light.  相似文献   

17.
One of the most important factors that limits the efficiencies of bulk‐heterojunction organic solar cells (OSCs) is the modest open‐circuit voltage (Voc) due to their large voltage loss (Vloss) caused by significant nonradiative recombination loss. To boost the performance of OSCs toward their theoretical limit, developing high‐performance donor: acceptor systems featuring low Vloss with suppressed nonradiative recombination losses (<0.30 V) is desired. Herein, high performance OSCs based on a polymer donor benzodithiophene‐difluorobenzoxadiazole‐2‐decyltetradecyl (BDT‐ffBX‐DT) and perylenediimide‐based acceptors (PDI dimer with spirofluorene linker (SFPDI), PDI4, and PDI6) are reported which offer a high power conversion efficiency (PCE) of 7.5%, 56% external quantum efficiency associated with very high Voc (>1.10 V) and low Vloss (<0.60 V). A high Voc up to 1.23 V is achieved, which is among the highest values reported for OSCs with a PCE beyond 6%, to date. These attractive results are benefit from the suppressed nonradiative recombination voltage loss, which is as low as 0.20 V. This value is the lowest value for OSCs so far and is comparable to high performance crystalline silicon and perovskite solar cells. These results show that OSCs have the potential to achieve comparable Voc and voltage loss as inorganic photovoltaic technologies.  相似文献   

18.
Generally, highly efficient organic solar cells require both a high open‐circuit voltage (VOC) and a high short‐circuit current density (JSC). Reducing the energy loss (Eloss) is an effective way to achieve a high VOC without compromising the photocurrent, which is ideal for enhancing the power conversion efficiencies (PCEs). Herein, a new chlorinated nonfullerene acceptor (ITC‐2Cl) with chlorinated thiophene‐fused end groups is developed. In comparison with the unchlorinated counterpart (ITCPTC), the introduction of Cl improves not only the electronic properties by redshifting the absorption spectra and deepening the lowest unoccupied molecular orbital energy levels, but also the molecular packing and thus thin‐film morphology. The PM6:ITC‐2Cl‐based device yields a significantly higher PCE (13.6%) with a lower Eloss (0.67 eV) than the ITCPTC‐based device (PCE of 12.3% with Eloss of 0.70 eV). More importantly, compared to the archetypal nonfullerene acceptors such as IT‐4F (PCE of 12.9% with Eloss of 0.73 eV) and IT‐4Cl (PCE of 12.7% with Eloss of 0.76 eV), the ITC‐2Cl‐based device shows a higher PCE and a lower Eloss. These results demonstrate that the chlorinated thiophene‐fused end group is a promising candidate for a high‐performance nonfullerene acceptors with low energy loss.  相似文献   

19.
20.
In this work, it is demonstrated that bimolecular recombination depends on the distance that free carriers are required to travel in transit to the electrodes in bulk heterojunction organic solar cells. By employing semi‐transparent devices, the carrier transport distance can be controlled via the local light absorption profile with an appropriate choice of the illumination side and incident wavelength. Using a series of light intensity‐dependent measurements, bimolecular recombination is shown to depend on the distance electrons or holes are required to transit the active layer. This effect is demonstrated for three different bulk heterojunction blends, where the restrictive carrier that causes the onset of recombination is identified. The mobility‐lifetime products of the limiting carriers are also estimated using a simple model for carrier extraction, where similar values are obtained regardless of the absorption profile. Implications for 1‐sun performance are also discussed, which provide guidelines for fabricating devices with thicker active layers capable of maximizing light absorption without succumbing to recombination losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号