首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid polymer electrolytes (SPEs) are desirable in lithium metal batteries (LMBs) since they are nonflammable and show excellent lithium dendrite growth resistance. However, fabricating high performance polymer LMBs is still a grand challenge because of the complex battery system. In this work, a series of tailor‐designed hybrid SPEs are used to prepare LMBs with a LiFePO4‐based cathode. High performance LMBs with both excellent rate capability and long cycle life are obtained at 60 and 90 °C. The well‐controlled network structure in this series of hybrid SPEs offers a model system to study the relationship between the SPE properties and the LMB performance. It is shown that the cycle life of the polymer LMBs is closely correlated with the SPE–Li interface ionic conductivity, underscoring the importance of the solid electrolyte interface in LMB operation. LMB performance is further correlated with the molecular network structure. It is anticipated that results from this study will shed light on designing SPEs for high performance LMB applications.  相似文献   

2.
Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)3?, TCM?], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO2CF3)2)]?, TFSI?}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future.  相似文献   

3.
All solid‐state sodium batteries (ASSBs) have attracted considerable attention due to their enhanced safety, long lifespan, and high energy density. However, several challenges have plagued the development of ASSBs, especially the relatively low ionic conductivity of solid‐state electrolytes (SSEs), large interfacial resistance, and low stability/compatibility between SSEs and electrodes. Here, a high‐performance all solid‐state sodium battery (NVP@C|PEGDMA‐NaFSI‐SPE|Na) is designed by employing carbon coated Na3V2(PO4)3 composite nanosheets (NVP@C) as the cathode, solvent‐free solid polymer electrolyte (PEGDMA‐NaFSI‐SPE) as the electrolyte and metallic sodium as the anode. The integrated electrolyte and cathode system prepared by the in situ polymerization process exhibits high ionic conductivity (≈10?4 S cm?1 at room temperature) and an outstanding electrolyte/electrode interface. Benefiting from these merits, the soft‐pack ASSB (NVP@C|PEGDMA‐NaFSI‐SPE|Na) delivers excellent cycling life over 740 cycles (capacity decay of only 0.007% per cycle) and maintains 95% of the initial reversible capacity with almost no self‐discharge even after resting for 3 months. Moreover, the bendable ASSB exhibits a high capacity of 106 mAh g?1 (corresponds to energy density of ≈355 Wh kg?1) at 0.5 C despite undergoing repeated bending for 535 cycles. This work offers a new strategy to fabricate high‐performance flexible ASSBs with a long lifespan and excellent flexibility.  相似文献   

4.
Solid‐state sodium batteries (SSSBs) are promising electrochemical energy storage devices due to their high energy density, high safety, and abundant resource of sodium. However, low conductivity of solid electrolyte as well as high interfacial resistance between electrolyte and electrodes are two main challenges for practical application. To address these issues, pure phase Na3Zr2Si2PO12 (NZSP) materials with Ca2+ substitution for Zr4+ are synthesized by a sol‐gel method. It shows a high ionic conductivity of more than 10?3 S cm?1 at 25 °C. Moreover, a robust SSSB is developed by integrating sodium metal anodes into NZSP‐type monolithic architecture, forming a 3D electronic and ionic conducting network. The interfacial resistance is remarkably reduced and the monolithic symmetric cell displays stable sodium platting/striping cycles with low polarization for over 600 h. Furthermore, by combining sodium metal anode with Na3V2(PO4)3 cathode, an SSSB is demonstrated with high rate capability and excellent cyclability. After 450 cycles, the capacity of the cell is still kept at 94.9 mAh g?1 at 1 C. This unique design of monolithic electrolyte architecture provides a promising strategy toward realizing high‐performance SSSBs.  相似文献   

5.
Solid polymer electrolytes (SPEs) are considered to be the key to solve the safety hazards and cycling performance of liquid high‐voltage lithium metal batteries (HVLMBs), but still suffer from low conductivity and poor interfacial compatibility. Here, polyvinylidene fluoride–polyvinyl acetate‐based (PVDF–PVAC) rigid–flexible coupling SPE selectively wetted by a tetramethylene sulfone (TMS) is prepared for high‐performance and superior‐safety HVLMBs. The intermolecular interactions in such SPE significantly facilitate lithium‐ion conductivity and electrolyte/electrode interface wettability. Moreover, PVAC selectively wetted with the TMS enhances interface compatibility with Li anodes and high‐voltage LiCoO2 cathodes. As a result, the as‐assembled LiCoO2/lithium‐metal solid‐state batteries present excellent cyclability with 85% capacity retention after 200 cycles between 3.0 and 4.5 V at room temperature. Furthermore, pouch cells with the as‐prepared SPE exhibit brilliant safety and superior interfacial compatibility. This study offers a promising and general selectively wetted design strategy to handle the compatibility and safety issues in HVLMBs.  相似文献   

6.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

7.
Perovskite‐type solid‐state electrolytes exhibit great potential for the development of all‐solid‐state lithium batteries due to their high Li‐ion conductivity (approaching 10?3 S cm?1), wide potential window, and excellent thermal/chemical stability. However, the large solid–solid interfacial resistance between perovskite electrolytes and electrode materials is still a great challenge that hinders the development of high‐performance all‐solid‐state lithium batteries. In this work, a perovskite‐type Li0.34La0.51TiO3 (LLTO) membrane with vertically aligned microchannels is constructed by a phase‐inversion method. The 3D vertically aligned microchannel framework membrane enables more effective Li‐ion transport between the cathode and solid‐state electrolyte than a planar LLTO membrane. A significant decrease in the perovskite/cathode interfacial resistance, from 853 to 133 Ω cm2, is observed. It is also demonstrated that full cells utilizing LLTO with vertically aligned microchannels as the electrolyte exhibit a high specific capacity and improved rate performance.  相似文献   

8.
The charge transfer kinetics between a lithium metal electrode and an inorganic solid electrolyte is of key interest to assess the rate capability of future lithium metal solid state batteries. In an in situ microelectrode study run in a scanning electron microscope, it is demonstrated that—contrary to the prevailing opinion—the intrinsic charge transfer resistance of the Li|Li6.25Al0.25La3Zr2O12 (LLZO) interface is in the order of 10?1 Ω cm2 and thus negligibly small. The corresponding high exchange current density in combination with the single ion transport mechanism (t+ ≈ 1) of the inorganic solid electrolyte enables extremely fast plating kinetics without the occurrence of transport limitations. Local plating rates in the range of several A cm?2 are demonstrated at defect free and chemically clean Li|LLZO interfaces. Practically achievable current densities are limited by lateral growth of lithium along the surface as well as electro‐chemo‐mechanical‐induced fracture of the solid electrolyte. In combination with the lithium vacancy diffusion limitation during electrodissolution, these morphological instabilities are identified as the key fundamental limitations of the lithium metal electrode for solid‐state batteries with inorganic solid electrolytes.  相似文献   

9.
Solid electrolytes (SEs) can potentially address the inherent safety problems of conventional organic liquid electrolytes. However, their low ionic conductivity and large interfacial resistance limit the practical applications of SEs. Here, a flexible solid electrolyte with a multilayer structure is fabricated by the UV curing of an interpenetrating network of poly(ether‐acrylate) (ipn‐PEA) in the Na3Zr2Si2PO12/poly(vinylidene fluoride‐hexafluoropropylene) porous skeleton (NZSP/PVDF‐HFP), exhibiting a high Na+ transference number of 0.63 and a suitable ionic conductivity of above 10?4 S cm?1 at 60 °C. In addition, due to the unique structure of the internal rigidity and external flexibility, the composite solid electrolyte can effectively mitigate interfacial ion transfer issues while guaranteeing a certain mechanical strength, and largely inhibiting the formation of dendrite and dead sodium. The solid sodium metal batteries using Na3V2(PO4)3 (NVP) as a cathode possess a discharge capacity of 85 mA h g?1 after 100 cycles at 0.5 C, and achieve above 90% of capacity retention rate during 100 cycles at 0.1 C for Na2/3Ni1/3Mn1/3Ti1/3O2 (NTMO) at 60 °C. The flexible solid electrolyte with multilayer structure shows a great advantage for managing the ionic conductivity and interface resistance problem, suggesting a promise as a practical sodium metal battery.  相似文献   

10.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

11.
Sulfide Na‐ion solid electrolytes (SEs) are key to enable room‐temperature operable all‐solid‐state Na‐ion batteries that are attractive for large‐scale energy storage applications. To date, few sulfide Na‐ion SEs have been developed and most of the SEs developed contain P and suffer from poor chemical stability. Herein, discovery of a new structural class of tetragonal Na4?xSn1?xSbxS4 (0.02 ≤ x ≤ 0.33) with space group I41/acd is described. The evolution of a new phase, distinctly different from Na4SnS4 or Na3SbS4, allows fast ionic conduction in 3D pathways (0.2–0.5 mS cm?1 at 30 °C). Moreover, their excellent air stability and reversible dissolution in water and precipitation are highlighted. Specifically, TiS2/Na–Sn all‐solid‐state Na‐ion batteries using Na3.75Sn0.75Sb0.25S4 demonstrates high capacity (201 mA h (g of TiS2)?1) with excellent reversibility.  相似文献   

12.
For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile?butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g?1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g?1). Moreover, high areal capacity of 7.4 mA h cm?2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm?2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.  相似文献   

13.
Solid‐state electrolytes are a promising candidate for the next‐generation lithium‐ion battery, as they have the advantages of eliminating the leakage hazard of liquid solvent and elevating stability. However, inherent limitations such as the low ionic conductivity of solid polymer electrolytes and the high brittleness of inorganic ceramic electrolytes severally impede their practical application. Here, an inexpensive, facile, and scalable strategy to fabricate a hybrid Li7La3Zr2O12 (LLZO) and poly(ethylene oxide)‐based electrolyte by exploiting bacterial cellulose as a template is reported. The well‐organized LLZO network significantly enhances the ionic conductivity by extending long transport pathways for Li ions, exhibiting an elevated conductivity of 1.12 × 10?4 S cm?1. In addition, the hybrid electrolyte presents a structural flexibility, with minor impedance increase after bending. The facile and applicable approach establishes new principles for the strategy of designing scalable and flexible hybrid polymer electrolytes that can be utilized for high‐energy‐density batteries.  相似文献   

14.
All‐solid‐state batteries (ASSBs) with silicon anodes are promising candidates to overcome energy limitations of conventional lithium‐ion batteries. However, silicon undergoes severe volume changes during cycling leading to rapid degradation. In this study, a columnar silicon anode (col‐Si) fabricated by a scalable physical vapor deposition process (PVD) is integrated in all‐solid‐state batteries based on argyrodite‐type electrolyte (Li6PS5Cl, 3 mS cm?1) and Ni‐rich layered oxide cathodes (LiNi0.9Co0.05Mn0.05O2, NCM) with a high specific capacity (210 mAh g?1). The column structure exhibits a 1D breathing mechanism similar to lithium, which preserves the interface toward the electrolyte. Stable cycling is demonstrated for more than 100 cycles with a high coulombic efficiency (CE) of 99.7–99.9% in full cells with industrially relevant areal loadings of 3.5 mAh cm?2, which is the highest value reported so far for ASSB full cells with silicon anodes. Impedance spectroscopy revealed that anode resistance is drastically reduced after first lithiation, which allows high charging currents of 0.9 mA cm?2 at room temperature without the occurrence of dendrites and short circuits. Finally, in‐operando monitoring of pouch cells gave valuable insights into the breathing behavior of the solid‐state cell.  相似文献   

15.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

16.
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries.  相似文献   

17.
The integration of highly conductive solid‐state electrolytes (SSEs) into solid‐state cells is still a challenge mainly due to the high impedance existing at the electrolyte/electrode interface. Although solid‐state garnet‐based batteries have been successfully assembled with the assistance of an intermediate layer between the garnet and the Li metal anode, the slow discharging/charging rates of the batteries inhibits practical applications, which require much higher power densities. Here, a crystalline sulfonated‐covalent organic framework (COF) thin layer is grown on the garnet surface via a simple solution process. It not only significantly improves the lithiophilicity of garnet electrolytes via the lithiation of the COF layer with molten Li, but also creates effective Li+ diffusion “highways” between the garnet and the Li metal anode. As a result, the interfacial impedance of symmetric solid‐state Li cells is significantly decreased and the cells can be operated at high current densities up to 3 mA cm?2, which is difficult to achieve with current interfacial modification technologies for SSEs. The solid‐state Li‐ion batteries using LiFePO4 cathodes, Li anodes, and COF‐modified garnet electrolytes thus exhibit a significantly improved rate capability.  相似文献   

18.
Na batteries are seen as a feasible alternative technology to lithium ion batteries due to the greater abundance of sodium and potentially similar electrochemical behavior. In this work, mixed phase electrolyte materials based on solid‐state compositions of a tri methylisobutylphosphonium (P111i4) bis(tri fluromethanesulphonyl)amide (NTf2) organic ionic plastic crystal (OIPC) and high concentration of NaNTf2 that support safe, sodium metal electrochemistry are demonstrated. A Na symmetric cell can be cycled efficiently, even in the solid state (at 50 °C and 60 °C), for a 25 mol% (P111i4NTf2)–75 mol% NaNTf2 composition at 0.1 mA cm?2 for 100 cycles. Thus, these mixed phase materials can be potentially used in Na‐based devices under moderate temperature conditions. It is also investigated that the phase behavior, conductivity, and electrochemical properties of mixtures of NaNTf2 with this OIPC. It is observed that these mixtures have complex phase behavior. For high compositions of the Na salt, the materials are solid at room temperature and retain a soft solid consistency even at 50 °C with remarkably high conductivity, approaching that of the pure ionic liquid at 50 °C, i.e., 10?3–10?2 S cm?1.  相似文献   

19.
All‐solid‐state batteries are promising candidates for the next‐generation safer batteries. However, a number of obstacles have limited the practical application of all‐solid‐state Li batteries (ASSLBs), such as moderate ionic conductivity at room temperature. Here, unlike most of the previous approaches, superior performances of ASSLBs are achieved by greatly reducing the thickness of the solid‐state electrolyte (SSE), where ionic conductivity is no longer a limiting factor. The ultrathin SSE (7.5 µm) is developed by integrating the low‐cost polyethylene separator with polyethylene oxide (PEO)/Li‐salt (PPL). The ultrathin PPL shortens Li+ diffusion time and distance within the electrolyte, and provides sufficient Li+ conductance for batteries to operate at room temperature. The robust yet flexible polyethylene offers mechanical support for the soft PEO/Li‐salt, effectively preventing short‐circuits even under mechanical deformation. Various ASSLBs with PPL electrolyte show superior electrochemical performance. An initial capacity of 135 mAh g?1 at room temperature and the high‐rate capacity up to 10 C at 60 °C can be achieved in LiFePO4/PPL/Li batteries. The high‐energy‐density sulfur cathode and MoS2 anode employing PPL electrolyte also realize remarkable performance. Moreover, the ASSLB can be assembled by a facile process, which can be easily scaled up to mass production.  相似文献   

20.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号