首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rechargeable, stretchable battery composed of a liquid metal alloy (eutectic gallium‐indium; EGaIn) anode, a carbon paste, and MnO2 slurry cathode, an alkaline electrolytic hydrogel, and a soft elastomeric package is presented. The battery can stably cycle within a voltage range of 1.40–1.86 V at 1 mA cm?2 while being subject to 100% tensile strain. This is accomplished through a mechanism that involves reversible stripping and plating of gallium along with MnO2 chemical conversion. Moreover, a technique to increase the contact area between the EGaIn anode and hydrogel interface using CaCl2 additives, which reduces polarization and therefore reduces the effective current density, leading to higher discharge plateaus and lower charge plateaus. Relative to previous attempts at energy storage with liquid metal, the EGaIn‐MnO2 battery presented here shows an exceptional areal specific capacity (≈3.8 mAh cm?2) and robust, stable rechargeability over >100 charging cycles. The battery is also stable under bending, with negligible change in electrochemical properties when bent to a 2 mm radius of curvature. Batteries embedded within a wearable elastomeric sleeve can power a blue light‐emitting diode and strain‐sensing circuit. These demonstrations suggest that stretchable EGaIn‐MnO2 batteries are feasible for applications in wearable energy‐storage electronics.  相似文献   

2.
Due to an ever‐increasing demand for electronic devices, rechargeable batteries are attractive for energy storage systems. A novel rechargeable aluminum‐ion battery based on Al3+ intercalation and deintercalation is fabricated with Ni3S2/graphene microflakes composite as cathode material and high‐purity Al foil as anode. This kind of aluminum‐ion battery comprises of an electrolyte containing AlCl3 in an ionic liquid of 1‐ethyl‐3‐methylimidazolium chloride ([EMIm]Cl). Galvanostatic charge/discharge measurements have been performed in a voltage range of 0.1–2.0 V versus Al/AlCl4 ?. An initial discharge specific capacity of 350 mA h g?1 at a current density of 100 mA g?1 is achieved, and the discharge capacity remains over 60 mA h g?1 and coulombic efficiency of 99% after 100 cycles. Typically, for the current density at 200 mA g?1, the initial charge and discharge capacities are 300 and 235 mA h g?1, respectively. More importantly, it should be emphasized that the battery has a high discharge voltage plateau (≈1.0 V vs Al/AlCl4 ?). These meaningful results represent a significant step forward in the development of aluminum‐ion batteries.  相似文献   

3.
Safety, nontoxicity, and durability directly determine the applicability of the essential characteristics of the lithium (Li)‐ion battery. Particularly, for the lithium–sulfur battery, due to the low ignition temperature of sulfur, metal lithium as the anode material, and the use of flammable organic electrolytes, addressing security problems is of increased difficulty. In the past few years, two basic electrolyte systems are studied extensively to solve the notorious safety issues. One system is the conventional organic liquid electrolyte, and the other is the inorganic solid‐state or quasi‐solid‐state composite electrolyte. Here, the recent development of engineered liquid electrolytes and design considerations for solid electrolytes in tackling these safety issues are reviewed to ensure the safety of electrolyte systems between sulfur cathode materials and the lithium‐metal anode. Specifically, strategies for designing and modifying liquid electrolytes including introducing gas evolution, flame, aqueous, and dendrite‐free electrolytes are proposed. Moreover, the considerations involving a high‐performance Li+ conductor, air‐stable Li+ conductors, and stable interface performance between the sulfur cathode and the lithium anode for developing all‐solid‐state electrolytes are discussed. In the end, an outlook for future directions to offer reliable electrolyte systems is presented for the development of commercially viable lithium–sulfur batteries.  相似文献   

4.
Achieving high‐performance Na‐ion capacitors (NICs) has the particular challenge of matching both capacity and kinetics between the anode and cathode. Here a high‐power NIC full device constructed from 2D metal–organic framework (MOFs) array is reported as the reactive template. The MOF array is converted to N‐doped mesoporous carbon nanosheets (mp‐CNSs), which are then uniformly encapsulated with VO2 and Na3V2(PO4)3 (NVP) nanoparticles as the electroactive materials. By this method, the high‐power performance of the battery materials is enabled to be enhanced significantly. It is discovered that such hybrid NVP@mp‐CNSs array can render ultrahigh rate capability (up to 200 C, equivalent to discharge within 18 s) and superior cycle performance, which outperforms all NVP‐based Na‐ion battery cathodes reported so far. A quasi‐solid‐state flexible NIC based on the NVP@mp‐CNSs cathode and the VO2@mp‐CNSs anode is further assembled. This hybrid NIC device delivers both high energy density and power density as well as a good cycle stability (78% retention after 2000 cycles at 1 A g?1). The results demonstrate the powerfulness of MOF arrays as the reactor for fabricating electrode materials.  相似文献   

5.
Fiber‐shaped rechargeable batteries hold promise as the next‐generation energy storage devices for wearable electronics. However, their application is severely hindered by the difficulty in fabrication of robust fiber‐like electrodes with promising electrochemical performance. Herein, yolk–shell NiS2 nanoparticles embedded in porous carbon fibers (NiS2?PCF) are successfully fabricated and developed as high‐performance fiber electrodes for sodium storage. Benefiting from the robust embedded structure, 3D porous and conductive carbon network, and yolk–shell NiS2 nanoparticles, the as‐prepared NiS2?PCF fiber electrode achieves a high reversible capacity of about 679 mA h g?1 at 0.1 C, outstanding rate capability (245 mA h g?1 at 10 C), and ultrastable cycle performance with 76% capacity retention over 5000 cycles at 5 C. Notably, a flexible fiber‐shaped sodium battery is assembled, and high reversible capacity is kept at different bending states. This work offers a new electrode‐design paradigm toward novel carbon fiber electrodes embedded with transition metal oxides/sulfides/phosphides for application in flexible energy storage devices.  相似文献   

6.
Rechargeable aqueous Zn‐based batteries are attractive candidates as energy storage technology, but the uncontrollable Zn dendrites, low stripping/plating coulombic efficiency, and inefficient utilization of Zn metal limit the battery reliability and energy density. Herein, for the first time, a novel presodiated TiS2 (Na0.14TiS2) is proposed and investigated as an intercalated anode for aqueous Zn‐ion batteries, showing a capacity of 140 mAh g?1 with a suitable potential of 0.3 V (vs Zn2+/Zn) at 0.05 A g?1 and superior cyclability of 77% retention over 5000 cycles at 0.5 A g?1. The remarkable performance originates from the buffer phase formation of Na0.14TiS2 after chemically presodiating TiS2, which not only improves the structural reversibility and stability but also enhances the diffusion coefficient and electronic conductivity, and lowers cation migration barrier, as evidenced by a series of experimental and theoretical studies. Moreover, an aqueous “rocking‐chair” Zn‐ion full battery is successfully demonstrated by this Na0.14TiS2 anode and ZnMn2O4 cathode, which delivers a capacity of 105 mAh g?1 (for anode) with an average voltage of 0.95 V at 0.05 A g?1 and preserves 74% retention after 100 cycles at 0.2 A g?1, demonstrating the feasibility of Zn‐ion full batteries for energy storage applications.  相似文献   

7.
A new sodium–sulfur (Na–S) flow battery utilizing molten sodium metal and flowable sulfur‐based suspension as electrodes is demonstrated and analyzed for the first time. Unlike the conventional flow battery and the high‐temperature Na–S battery, the proposed flow battery system decouples the energy and power thermal management by operating at different temperatures for the storage tank (near room temperature) and the power stack (100–150 °C). The new Na–S flow battery offers several advantages such as easy preparation and integration of the electrode, low energy efficiency loss due to temperature maintenance, great tolerance of the volume change of the metal anode, and efficient utilization of sulfur. The Na–S flow battery has an estimated system cost in the range of $50–100 kWh?1 which is very competitive for grid‐scale energy storage applications.  相似文献   

8.
Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)3?, TCM?], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO2CF3)2)]?, TFSI?}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future.  相似文献   

9.
The conventional electrolyte of 1 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl sulfoxide (DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li–O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li–O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI?)a ? Li+? (DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt–solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon‐based air electrodes has been greatly enhanced, resulting in improved cycling performance of Li–O2 batteries. The fundamental stability of the electrolyte in the absence of free‐solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.  相似文献   

10.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

11.
12.
Ni‐rich cathodes are considered feasible candidates for high‐energy‐density Li‐ion batteries (LIBs). However, the structural degradation of Ni‐rich cathodes on the micro‐ and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3‐(trimethylsilyl)‐2‐oxazolidinone (TMS‐ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion‐paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS‐ON helps maintain a stable solid–electrolyte interphase (SEI) at Ni‐rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock‐salt structures and enabling the long‐term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS‐ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g?1 after 400 cycles at 45 °C.  相似文献   

13.
With high theoretical energy density, rechargeable metal–gas batteries (e.g., Li–CO2 battery) are considered as one of the most promising energy storage devices. However, their practical applications are hindered by the sluggish reaction kinetics and discharge product accumulation during battery cycling. Currently, the solutions focus on exploration of new catalysts while the thorough understanding of their underlying mechanisms is often ignored. Herein, the interfacial electronic interaction within rationally designed catalysts, ZnS quantum dots/nitrogen‐doped reduced graphene oxide (ZnS QDs/N‐rGO) heterostructures, and their effects on transformation and deposition of discharge products in the Li–CO2 battery are revealed. In this work, the interfacial interaction can both enhance the catalytic activities of ZnS QDs/N‐rGO heterostructures and induce the nucleation of discharge products to form a homogeneous Li2CO3/C film with excellent electronic transmission and high electrochemical activities. When the batteries cycle within a cutoff specific capacity of 1000 mAh g?1 at a current density of 400 mA g?1, the cycling performance of the Li–CO2 battery using a ZnS QDs/N‐rGO cathode is over 3 and 9 times than those coupled with a ZnS nanosheets (NST)/N‐rGO cathode and a N‐rGO cathode, respectively. This work provides comprehensive understandings on designing catalysts for Li–CO2 batteries as well as other rechargeable metal–gas batteries.  相似文献   

14.
The lithium–sulfur battery is a promising next‐generation rechargeable battery system which promises to be less expensive and potentially fivefold more energy dense than current Li‐ion technologies. This can only be achieved by improving the sulfur utilization in thick, high areal loading cathodes while minimizing capacity fading to realize high practical energy densities and long cycle‐life. This study reports a simple method to fabricate a high capacity, high loading cathode with one of the highest cycle‐stabilities reported. It is demonstrated that sulfur sols formed by crashing dissolved elemental sulfur into water are trapped between graphene oxide sheets when flocculated with polyethyleneimine. Low temperature, hydrothermal treatment produces a conductive, partially covalent composite exhibiting outstanding cycle‐stability. Using this method, sulfur can be uniformly distributed at fractions as high as 75.7 wt%. Electrodes with high areal sulfur loadings (up to ≈5.4 mg cm?2), prepared using these composites, lead to projected high cell level practical energy densities of 400 Wh kg?1. The electrodes demonstrate negligible capacity loss over 250 cycles at 0.15 C and only 0.028% capacity loss per cycle over 810 cycles at 0.75 C. Eventual capacity fading is found to be linked to degradation of lithium‐metal anode suggesting that the cathode material remains stable over even more extended cycling.  相似文献   

15.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

16.
Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)?1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage.  相似文献   

17.
Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g?1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm?2 at 0.5C.  相似文献   

18.
Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm?2 (comparing to 151.5 mW cm?2 of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.  相似文献   

19.
Conventional charge storage mechanisms for electrode materials are common in widely exploited insertion/extraction processes, while some sporadic examples of chemical conversion mechanisms exist. It is perceived to be of huge potential, but it is quite challenging to develop new battery chemistry to promote battery performance. Here, an initiating and holistic deposition–dissolution battery mechanism for both cathodes and anodes is reported. A MnO2–Cu battery based on this mechanism demonstrates outstanding energy density (27.7 mWh cm?2), power density (1232 mW cm?2), high reversibility, and unusual Coulombic efficiency. It can be charged to 0.8 mAh cm?2 within 42 s and possessees a stable rate cyclability within vastly varied discharging current density (4–64 mA cm?2). Moreover, the deposition–dissolution mechanism can be universally adopted and derived such that the corresponding MnO2–Zn and MnO2–Bi batteries are successfully constructed. The material selection principle, deposition–dissolution behaviors of cathode/anode materials, and battery performance are systematically elaborated. Since the electrodeposition chemistry is capable of involving a large family of materials, for example, metal oxides as cathode materials, or metals as anode materials, the research could be a model system to open a door to explore new aqueous battery materials and chemistry.  相似文献   

20.
A unique 3D hybrid sponge with chemically coupled nickel disulfide‐reduced graphene oxide (NiS2‐RGO) framework is rationally developed as an effective polysulfide reservoir through a biomolecule‐assisted self‐assembly synthesis. An optimized amount of NiS2 (≈18 wt%) with porous nanoflower‐like morphology is uniformly in situ grown on the RGO substrate, providing abundant active sites to adsorb and localize polysulfides. The improved polysulfide adsorptivity from sulfiphilic NiS2 is confirmed by experimental data and first‐principle calculations. Moreover, due to the chemical coupling between NiS2 and RGO formed during the in situ synthesis, the conductive RGO substrate offers a 3D electron pathway to facilitate charge transfer toward the NiS2‐polysulfide adsorption interface, triggering a fast redox kinetics of polysulfide conversion and excellent rate performance (C/20–4C). Therefore, the self‐assembled hybrid structure simultaneously promotes static polysulfide‐trapping capability and dynamic polysulfide‐conversion reversibility. As a result, the 3D porous sponge enables a high sulfur content (75 wt%) and a remarkably high sulfur loading (up to 21 mg cm?2) and areal capacity (up to 16 mAh cm?2), exceeding most of the reported values in the literature involving either RGO or metal sulfides/other metal compounds (sulfur content of <60 wt% and sulfur loading of <3 mg cm?2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号