首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Additives are widely adopted for efficient, stable, and hysteresis‐free perovskite solar cells and play an important role in various breakthroughs of perovskite solar cells (PSCs). Herein the various additives adopted for PSCs are reviewed and their functioning mechanism and influence on device performance is described. The main roles of additives, modulating morphology of perovskite films, stabilizing phase of formamidinium (FA) and cesium (Cs)‐based perovskites, adjusting energy level alignment in PSCs, suppressing nonradiative recombination in perovskites, eliminating hysteresis, enhancing operational stability of PSCs, are summarized.  相似文献   

2.
Solution‐processable halide perovskites have emerged as strong contenders for next‐generation solar cells owing to their favorable optoelectronic properties. To maintain the efficiency momentum of perovskite solar cells (PSCs), development of advanced processing techniques, particularly for the perovskite layer, is imperative. There is a close correlation between the quality of the perovskite layer and its photophysical properties: Highly crystalline large grains with uniform morphology of the perovskite layer and their interface with charge transporters are crucial for achieving high performance. Significant efforts have been dedicated to achieve perovskite films with large grains reaching the millimeter‐scale for high‐efficiency PSCs. Recent work showcases a transition from large grain polycrystalline to single‐crystalline (SC) PSCs made possible by the facile growth of perovskite single crystals. In this review, the recent progress of the large grain polycrystalline PSCs and grain boundary‐free SC‐PSCs is reported, particularly focusing on the recent approach of depositing large‐grained perovskite layers and single crystal growth technique, that have been adopted for fabrication of efficient PSCs. In addition, prospects of SC‐PSCs and their further development in terms of efficiency, device design, scalability, and stability are discussed.  相似文献   

3.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n?1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.  相似文献   

4.
Semitransparent perovskite solar cells (PSCs) are of interest for application in tandem solar cells and building‐integrated photovoltaics. Unfortunately, several perovskites decompose when exposed to moisture or elevated temperatures. Concomitantly, metal electrodes can be degraded by the corrosive decomposition products of the perovskite. This is even the more problematic for semitransparent PSCs, in which the semitransparent top electrode is based on ultrathin metal films. Here, we demonstrate outstandingly robust PSCs with semitransparent top electrodes, where an ultrathin Ag layer is sandwiched between SnOx grown by low‐temperature atomic layer deposition. The SnOx forms an electrically conductive permeation barrier, which protects both the perovskite and the ultrathin silver electrode against the detrimental impact of moisture. At the same time, the SnOx cladding layer underneath the ultra‐thin Ag layer shields the metal against corrosive halide compounds leaking out of the perovskite. Our semitransparent PSCs show an efficiency higher than 11% along with about 70% average transmittance in the near‐infrared region (λ > 800 nm) and an average transmittance of 29% for λ = 400–900 nm. The devices reveal an astonishing stability over more than 4500 hours regardless if they are exposed to ambient atmosphere or to elevated temperatures.  相似文献   

5.
High temperature stable inorganic CsPbX3 (X: I, Br, or mixed halides) perovskites with their bandgap tailored by tuning the halide composition offer promising opportunities in the design of ideal top cells for high‐efficiency tandem solar cells. Unfortunately, the current high‐efficiency CsPbX3 perovskite solar cells (PSCs) are prepared in vacuum, a moisture‐free glovebox or other low‐humidity conditions due to their poor moisture stability. Herein, a new precursor system (HCOOCs, HPbI3, and HPbBr3) is developed to replace the traditional precursors (CsI, PbI2, and PbBr2) commonly used for solar cells of this type. Both the experiments and calculations reveal that a new complex (HCOOH?Cs+) is generated in this precursor system. The new complex is not only stable against aging in humid air ambient at 91% relative humidity, but also effectively slows the perovskite crystallization, making it possible to eliminate the popular antisolvent used in the perovskite CsPbI2Br film deposition. The CsPbI2Br PSCs based on the new precursor system achieve a champion efficiency of 16.14%, the highest for inorganic PSCs prepared in ambient air conditions. Meanwhile, high air stability is demonstrated for an unencapsulated CsPbI2Br PSC with 92% of the original efficiency remaining after more than 800 h aging in ambient air.  相似文献   

6.
Metal halide perovskite solar cells (PSCs) have emerged as promising candidates for photovoltaic technology with their power conversion efficiencies over 23%. For prototypical organic–inorganic metal halide perovskites, their intrinsic instability poses significant challenges to the commercialization of PSCs. Recently, the scientific community has done tremendous work in composition engineering to develop more robust light‐absorbing layers, including mixed‐ion hybrid perovskites, low‐dimensional hybrid perovskites, and all‐inorganic perovskites. This review provides an overview of the impact of these perovskites on the efficiency and long‐term stability of PSCs.  相似文献   

7.
The stability of perovskite solar cells (PSCs) has been identified to be the bottleneck toward their industrialization. With the aim of tackling this challenge, a 1D PbI2‐bipyridine (BPy)(II) perovskite is fabricated, which is shown to be capable of in situ assembly of a 1D@3D perovskite that is promoted by a PbI2‐dimethyl sulfoxide complex with a skeletal linear chain structure. The as‐prepared 1D@3D perovskite is observed to demonstrate extremely high stability under external large electric fields in humid environments by means of an in situ characterization technique. This stability is associated with its well lattice‐matching heterojunction structure between 1D and 3D heterojunction domains. Importantly, ion migration is alleviated through blocking of the ion‐migration channels. Accordingly, the 1D@3D hybrid PSC shows a power conversion efficiency of 21.18% maintaining remarkably high long‐term stability in the presence of water, illumination, and external electric fields. This rational design and microstructure study of 1D@3D perovskites provides a new paradigm that may enable higher efficiency and stability of PSCs.  相似文献   

8.
Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide‐bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo‐generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.  相似文献   

9.
Several applications of perovskite solar cells (PSCs) demand a semitransparent top electrode to afford top‐illumination or see‐through devices. Transparent conductive oxides, such as indium tin oxide (ITO), typically require postdeposition annealing at elevated temperatures, which would thermally decompose the perovskite. In contrast, silver nanowires (AgNWs) in dispersions of water would be a very attractive alternative that can be deposited at ambient conditions. Water is environmentally friendly without safety concerns associated with alcohols, such as flammability. Due to the notorious moisture sensitivity of lead‐halide perovskites, aqueous processing of functional layers, such as electrodes, on top of a perovskite device stack is elusive. Here, impermeable electron transport layers (ETLs) are shown to enable the deposition of semitransparent AgNW electrodes from green aqueous dispersions on top of the perovskite cell without damage. The polyvinylpyrrolidone (PVP) capping agent of the AgNWs is found to cause a work–function shift and an energy barrier between the AgNWs and the adjacent ETL. Thus, a high carrier density (≈1018 cm?3) in the ETL is required to achieve well‐behaved J/V characteristics free of s‐shapes. Ultimately, semitransparent PSCs are demonstrated that provide an efficiency of 17.4%, which is the highest efficiency of semitransparent p‐i‐n perovskite solar cells with an AgNW top electrode.  相似文献   

10.
State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2 phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.  相似文献   

11.
All‐inorganic cesium lead halide (CsPbX3) perovskites have emerged as promising photovoltaic materials owing to their superior thermal stability compared to traditional organic–inorganic hybrid counterparts. However, the CsPbX3 perovskites generally need to be prepared at high‐temperature, which restricts their application in multilayer or flexible solar cells. Herein, the formation of CsPbX3 perovskites at room‐temperature (RT) induced by dimethylsulphoxide (DMSO) coordination is reported. It is further found that a RT solvent (DMSO) annealing (RTSA) treatment is valid to control the perovskite crystallization dynamics, leading to uniform and void‐free films, and consequently a maximum power conversion efficiency (PCE) of 6.4% in the device indium tin oxide (ITO)/NiO x /RT‐CsPbI2Br/C60/Bathocuproine (BCP)/Ag, which is, as far as it is known, the first report of RT solution‐processed CsPbX3‐based perovskite solar cells (PSCs). Moreover, the efficiency can be boosted up to 10.4% by postannealing the RTSA‐treated perovskite film at an optimal temperature of 120 °C. Profiting from the moderate temperature, flexible PSCs are also demonstrated with a maximum PCE of 7.3% for the first time. These results may stimulate further development of all‐inorganic CsPbX3 perovskites and their application in flexible electronics.  相似文献   

12.
The hole transporting layer (HTL) plays an important role in realizing efficient and stable perovskite solar cells (PSCs). In spite of intensive research efforts toward the development of HTL materials, low‐cost, dopant‐free hole transporting materials that lead to efficient and stable PSCs remain elusive. Herein, a simple polycyclic heteroaromatic hydrocarbon‐based small molecule, 2,5,9,12‐tetra(tert‐butyl)diacenaphtho[1,2‐b:1′,2′‐d]thiophenen, as an efficient HTL material in PSCs is presented. This molecule is easy to synthesize and inexpensive. It is hydrophobic and exhibits excellent film‐forming properties on perovskites. It has unusually high hole mobility and a desirable highest occupied molecular orbital energy level, making it an ideal HTL material. PSCs fabricated using both the n‐i‐p planar and mesoscopic architectures with this compound as the HTL show efficiencies as high as 15.59% and 18.17%, respectively, with minimal hysteresis and high long term stability under ambient conditions.  相似文献   

13.
Organic–inorganic hybrid lead halide perovskites are emerging as highly promising candidates for highly efficient thin film photovoltaics due to their excellent optoelectronic properties and low‐temperature process capability. However, the long‐term stability in ambient air still is a key issue limiting their further practical applications. Herein, the enhancement of both performance and stability of perovskite solar cells is reported by employing 2D and 3D heterostructured perovskite films with unique nanoplate/nanocrystalline morphology. The 2D/3D heterostructured perovskites combine advantages of the high‐performance lead‐based perovskite 3D CH3NH3PbI3 (MAPbI3) and the air‐stable bismuth‐based quasi‐perovskite 2D MA3Bi2I9. In the 2D/3D heterostructure, the hydrophobic MA3Bi2I9 platelets vertically situate between the MAPbI3 grains, forming a lattice‐like structure to tightly enclose the 3D MAPbI3 perovskite grains. The solar cell based on the optimal 2D/3D (9.2%) heterostructured film achieves a high efficiency of 18.97%, with remarkably reduced hysteresis and significantly improved stability. The work demonstrates that construction of 2D/3D heterostructured films by hybridizing different species of perovskite materials is a feasible way to simultaneously enhance both efficiency and stability of perovskite solar cells.  相似文献   

14.
Although all‐inorganic perovskite solar cells (PSCs) demonstrate high thermal stability, cesium‐lead halide perovskites with high iodine content suffer from poor stability of the black phase (α‐phase). In this study, it is demonstrated that incorporating InCl3 into the host perovskite lattice helps to inhibit the formation of yellow phase (δ‐phase) perovskite and thereby enhances the long‐term ambient stability. The enhanced stability is achieved by a strategy for the structural reconstruction of CsPbI2Br perovskite by means of In3+ and Cl? codoping, which gives rise to a significant improvement in the overall spatial symmetry with a closely packed atom arrangement due to the crystal structure transformation from orthorhombic (Pnma) to cubic (Pm‐3m). In addition, a novel thermal radiation heating method that further improves the uniformity of the perovskite thin films is presented. This approach enables the construction of all‐inorganic InCl3:CsPbI2Br PSCs with a champion power conversion efficiency of 13.74% for a small‐area device (0.09 cm2) and 11.4% for a large‐area device (1.00 cm2).  相似文献   

15.
Discovery of the 9.7% efficiency, 500 h stable solid‐state perovskite solar cell (PSC) in 2012 triggered off a wave of perovskite photovoltaics. As a result, a certified power conversion efficiency (PCE) of 25.2% was recorded in 2019. Publications on PSCs have increased exponentially since 2012 and the total number of publications reached over 13 200 as of August 2019. PCE has improved by developing device structures from mesoscopic sensitization to planar p‐i‐n (or n‐i‐p) junction and by changing composition from MAPbI3 to FAPbI3‐based mixed cations and/or mixed anion perovskites. Long‐term stability has been significantly improved by interfacial engineering with hydrophobic materials or the 2D/3D concept. Although small area cells exhibit superb efficiency, scale‐up technology is required toward commercialization. In this review, research direction toward large‐area, stable, high efficiency PSCs is emphasized. For large‐area perovskite coating, a precursor solution is equally important as coating methods. Precursor engineering and formulation of the precursor solution are described. For hysteresis‐less, stable, and higher efficiency PSCs, interfacial engineering is one of the best ways as defects can be effectively passivated and thereby nonradiative recombination is efficiently reduced. Methodologies are introduced to minimize interfacial and grain boundary recombination.  相似文献   

16.
ABX3 type metal halide perovskite solar cells (PSCs) have shown efficiencies over 25%, rocketing toward their theoretical limit. To gain the full potential of PSCs relies on the understanding of the device working mechanisms and recombination, the material quality, and the match of energy levels in the device stacks. In this review, the importance of designing PSCs from the viewpoint of surface/interface science studies is presented. For this purpose, recent case studies are discussed to demonstrate how probing of local heterogeneities (e.g., grains, grain boundaries, atomic structure, etc.) in perovskites by surface science techniques can help correlate material properties and PSC device performance. At the solar cell device level with active areas larger than millimeter scale, the ensemble average measurement techniques can characterize the overall average properties of perovskite films as well as their adjacent layers and provide clues to understand better the solar cell parameters. How generation and healing of electronic defects in perovskite films limit the device efficiency, reproducibility, and stability, and induce the time‐dependent transient behavior in the current‐voltage curves are also the central focus of this review. On the basis of these studies, strategies to further improve efficiency and stability, as well as reducing hysteresis are presented.  相似文献   

17.
Developing efficient narrow bandgap Pb–Sn hybrid perovskite solar cells with high Sn‐content is crucial for perovskite‐based tandem devices. Film properties such as crystallinity, morphology, surface roughness, and homogeneity dictate photovoltaic performance. However, compared to Pb‐based analogs, controlling the formation of Sn‐containing perovskite films is much more challenging. A deeper understanding of the growth mechanisms in Pb–Sn hybrid perovskites is needed to improve power conversion efficiencies. Here, in situ optical spectroscopy is performed during sequential deposition of Pb–Sn hybrid perovskite films and combined with ex situ characterization techniques to reveal the temporal evolution of crystallization in Pb–Sn hybrid perovskite films. Using a two‐step deposition method, homogeneous crystallization of mixed Pb–Sn perovskites can be achieved. Solar cells based on the narrow bandgap (1.23 eV) FA0.66MA0.34Pb0.5Sn0.5I3 perovskite absorber exhibit the highest efficiency among mixed Pb–Sn perovskites and feature a relatively low dark carrier density compared to Sn‐rich devices. By passivating defect sites on the perovskite surface, the device achieves a power conversion efficiency of 16.1%, which is the highest efficiency reported for sequential solution‐processed narrow bandgap perovskite solar cells with 50% Sn‐content.  相似文献   

18.
With the potential of achieving high efficiency and low production costs, perovskite solar cells (PSCs) have attracted great attention. However, their unstableness under moist condition has retarded the commercial development. Recently, 2D perovskites have received a lot of attention due to their high moisture resistance. In this work, four quasi 2D quasi perovskites are prepared, then their stability under moist condition is investigated. The surface morphology, crystal structure, optical properties, and photovoltaic performance are measured. Among the four quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the best performance: uniform and dense film, extremely well‐oriented crystal structure, strong absorption, and a high power conversion efficiency (PCE) of 17.40%. The aging tests show that quasi‐2D perovskites are more stable under moist conditions than FAPbI3 is. The (C6H5CH2NH3)2(FA)8Pb9I28 quasi‐2D perovskite devices exhibit high humidity stability, maintaining 80% of the starting PCE after 500 h under 80% relative humidity. Compared with other quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the highest humidity stability, due to their strongest hydrophobicity from C6H5CH2NH3+. This work demonstrates that the properties of perovskite materials can be modified by adding different ammonium salts into FAPbI3. Thus, by introducing ammonium salts with high hydrophobic properties the fabrication of highly efficient and stable 2D PSCs may be possible.  相似文献   

19.
Currently, lead‐based perovskites with mixed multiple cations and hybrid halides are attracting intense research interests due to their promising stability and high efficiency. A tremendous amount of 3D and 2D perovskite compositions and configurations are causing a strong demand for high throughput synthesis and characterization. Furthermore, wide bandgap (≈1.75 eV) perovskites as promising top‐cell materials for perovskite–silicon tandem configurations require the screening of different compositions to overcome photoinduced halide segregation and still yielding a high open‐circuit voltage (Voc). Herein, a home‐made high throughput robot setup is introduced performing automatic perovskite synthesis and characterization. Subsequently, four kinds of compositions (i.e., cation mixtures of Cs–methylammonium (MA), Cs– formamidinium (FA), MA–FA, and FA–MA) with an optical bandgap of ≈1.75 eV are identified as promising device candidates. For Cs–MA and Cs–FA films it is found that the Br–I phase segregation indeed can be overcome. Moreover, Cs–MA, MA–FA, and Cs–FA based devices exhibit an average Voc of 1.17, 1.17, 1.12 V, and their maximum values approached 1.18, 1.19, 1.14 V, respectively, which are among the highest Voc (≈1.2 V) values for ≈40% Br perovskite. These findings highlight that the high throughput approach can effectively and efficiently accelerate the invention of novel perovskites for advanced applications.  相似文献   

20.
Organic–inorganic perovskites have demonstrated an impressive potential for the design of the next generation of solar cells. Perovskite solar cells (PSCs) are currently considered for scaling up and commercialization. Many of the lab‐scale preparation methods are however difficult to scale up or are environmentally unfriendly. The highest efficient PSCs are currently prepared using the antisolvent method, which utilizes a significant amount of an organic solvent to induce perovskite crystallization in a thin film. An antisolvent‐free method is developed in this work using flash infrared annealing (FIRA) to prepare methylammonium lead iodide (MAPbI3) PSCs with a record stabilized power conversion efficiency of 18.3%. With an irradiation time of fewer than 2 s, FIRA enables the coating of glass and plastic substrates with pinhole‐free perovskite films that exhibit micrometer‐size crystalline domains. This work discusses the FIRA‐induced crystallization mechanism and unveils the main parameters controlling the film morphology. The replacement of the antisolvent method and the larger crystalline domains resulting from flash annealing make FIRA a highly promising method for the scale‐up of PSC manufacture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号