首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charging times ranging from seconds to minutes with high power densities can be achieved by electrochemical capacitors in principle. Over the past few decades, the performance of supercapacitors has been greatly improved by the utilization of new materials, preparation of unique nanostructures, investigation of electrolytes, and so on. However, the discovery of the related basic theory is very limited. Herein, a new view of a supercapacitor called the “integrated supercapacitor” is proposed. The electrode of the integrated supercapacitor consists of certain positive and negative materials. With this design, a single integrated electrode can work in both the positive and negative potential windows simultaneously. Additionally, the integrated full supercapacitor device shows a much higher capacitance and wider potential window than traditional single symmetric and asymmetric supercapacitors, which results from its multiple mechanisms, including the traditional positive//positive symmetric, positive//negative asymmetric, and negative//negative symmetric full supercapacitor mechanisms.  相似文献   

2.
3.
Miniaturization of energy storage devices with enhanced performance metrics can reduce the footprint of microdevices being used in our daily life. Micro‐­supercapacitor architectures with planar geometry provides several advantages, such as, the ability to control and reduce the distances ions travel between two electrodes, easy integration to microdevices, and offer the potential of being extended into 3D without compromising the interelectrode distances. Here, focused ion beam (FIB) technology is used to directly write miniaturized planar electrode systems of reduced graphene oxide (FIB‐rGO) on films of graphene oxide. Using optimized ion beam irradiation, interdigitated FIB‐rGO electrode designs with 40 μm long and 3.5 μm wide fingers with ultrasmall interelectrode spacing of 1 μm demonstrate a large capacitance (102 mF cm?2), ultrasmall time response (0.03 ms), low equivalent series resistance (0.35 mΩ cm2), and retain 95% of the capacitance after 1000 cycles at an ultrahigh current density of 45 mA cm?2. These performance metrics show remarkable improvements on several counts of supercapacitor performance over existing reports due to the miniaturized electrode dimensions and minimal damage to the graphene sheets. It is believed that these results can provide avenues for large‐scale fabrication of arrayed, planar, high‐performance micro‐supercapacitors with a small environmental footprint.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
The performance of a supercapacitor can be characterized by a series of key parameters, including the cell capacitance, operating voltage, equivalent series resistance, power density, energy density, and time constant. To accurately measure these parameters, a variety of methods have been proposed and are used in academia and industry. As a result, some confusion has been caused due to the inconsistencies between different evaluation methods and practices. Such confusion hinders effective communication of new research findings, and creates a hurdle in transferring novel supercapacitor technologies from research labs to commercial applications. Based on public sources, this article is an attempt to inventory, critique and hopefully streamline the commonly used instruments, key performance metrics, calculation methods, and major affecting factors for supercapacitor performance evaluation. Thereafter the primary sources of inconsistencies are identified and possible solutions are suggested, with emphasis on device performance vs. material properties and the rate dependency of supercapacitors. We hope, by using reliable, intrinsic, and comparable parameters produced, the existing inconsistencies and confusion can be largely eliminated so as to facilitate further progress in the field.  相似文献   

12.
13.
14.
One of the biggest challenges we will face over the next few decades is finding a way to power the future while maintaining strong socioeconomic growth and a clean environment. A transition from the use of fossil fuels to renewable energy sources is expected. Cellulose, the most abundant natural biopolymer on earth, is a unique, sustainable, functional material with exciting properties: it is low‐cost and has hierarchical fibrous structures, a high surface area, thermal stability, hydrophilicity, biocompatibility, and mechanical flexibility, which makes it ideal for use in sustainable, flexible energy storage devices. This review focuses on energy storage applications involving different forms of cellulose (i.e., cellulose microfibers, nanocellulose fibers, and cellulose nanocrystals) in supercapacitors, with particular emphasis on new trends and performance considerations relevant to these fields. Recent advances and approaches to obtaining high capacity devices are evaluated and the limitations of cellulose‐based systems are discussed. For the first time, a combination of device‐specific factors such as electrode structures, mass loadings, areal capacities, and volumetric properties are taken into account, so as to evaluate and compare the energy storage performance and to better assess the merits of cellulose‐based materials with respect to real applications.  相似文献   

15.
The increasing demand for efficient storage of electrical energy is one of the main challenges in the transformation toward a carbon neutral society. While electrostatic capacitors can achieve much higher power densities compared to other storage technologies like batteries, their energy densities are comparatively low. Here, it is proposed and demonstrated that negative capacitance, which is present in ferroelectric materials, can be used to improve the energy storage of capacitors beyond fundamental limits. While negative capacitance was previously mainly considered for low power electronics, it is shown that ferroelectric/dielectric capacitors using negative capacitance are promising for energy storage applications. Compared to earlier results using (anti)ferroelectric materials for electrostatic energy storage, much higher efficiencies of more than 95% even for ultrahigh energy densities beyond 100 J cm?3 are demonstrated using nonepitaxial thin films suitable for integration on 3D substrates. Stable operation up to 150 °C and 108 charging/discharging cycles is further demonstrated.  相似文献   

16.
17.
18.
19.
20.
The pursuit of new categories of active materials as electrodes of supercapacitors remains a great challenge. Herein, for the first time, elemental boron as a superior electrode material of supercapacitors is reported, which exhibits significantly high capacitances and excellent rate performance in all alkaline, neutral, and acidic electrolytes. Notably, boron nanowire‐carbon fiber cloth (BNWs‐CFC) electrodes achieve a capacitance up to 42.8 mF cm?2 at a scan rate of 5 mV s?1 and 60.2 mF cm?2 at a current density of 0.2 mA cm?2 in the acidic electrolyte. Moreover, in all these three kinds of electrolytes, BNWs‐CFC electrodes demonstrate a decent cycling stability with >80% capacitance retention after 8000 charging/discharging cycles. The Dominating energy storage mechanism of BNWs in the different electrolytes is analyzed by looking into the kinetics of the electrochemical process. Subsequently, the BNWs‐CFC electrode is used to fabricate a flexible solid‐state supercapacitor, which reveals a specific capacitance up to 22.73 mF cm?2 and good mechanical performance after 1000 bending cycles. This study opens a new avenue to explore elemental boron‐based new nanomaterials for the application of energy storage with superior electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号