首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalysis is considered as one of the promising routes to solve the energy and environmental crises by utilizing solar energy. Graphitic carbon nitride (g‐C3N4) has attracted worldwide attention due to its visible‐light activity, facile synthesis from low‐cost materials, chemical stability, and unique layered structure. However, the pure g‐C3N4 photocatalyst still suffers from its low separation efficiency of photogenerated charge carriers, which results in unsatisfactory photocatalytic activity. Recently, g‐C3N4‐based heterostructures have become research hotspots for their greatly enhanced charge carrier separation efficiency and photocatalytic performance. According to the different transfer mechanisms of photogenerated charge carriers between g‐C3N4 and the coupled components, the g‐C3N4‐based heterostructured photocatalysts can be divided into the following categories: g‐C3N4‐based conventional type II heterojunction, g‐C3N4‐based Z‐scheme heterojunction, g‐C3N4‐based p–n heterojunction, g‐C3N4/metal heterostructure, and g‐C3N4/carbon heterostructure. This review summarizes the recent significant progress on the design of g‐C3N4‐based heterostructured photocatalysts and their special separation/transfer mechanisms of photogenerated charge carriers. Moreover, their applications in environmental and energy fields, e.g., water splitting, carbon dioxide reduction, and degradation of pollutants, are also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced g‐C3N4‐based heterostructured photocatalysts are presented.  相似文献   

2.
In this work, plasmonic Au/SnO2/g‐C3N4 (Au/SO/CN) nanocomposites have been successfully synthesized and applied in the H2 evolution as photocatalysts, which exhibit superior photocatalytic activities and favorable stability without any cocatalyst under visible‐light irradiation. The amount‐optimized 2Au/6SO/CN nanocomposite capable of producing approximately 770 μmol g?1 h?1 H2 gas under λ > 400 nm light illumination far surpasses the H2 gas output of SO/CN (130 μmol g?1), Au/CN (112 μmol g?1 h?1), and CN (11 μmol g?1 h?1) as a contrast. In addition, the photocatalytic activity of 2Au/6SO/CN maintains unchanged for 5 runs in 5 h. The enhanced photoactivity for H2 evolution is attributed to the prominently promoted photogenerated charge separation via the excited electron transfer from plasmonic Au (≈520 nm) and CN (470 nm > λ > 400 nm) to SO, as indicated by the surface photovoltage spectra, photoelectrochemical IV curves, electrochemical impedance spectra, examination of formed hydroxyl radicals, and photocurrent action spectra. Moreover, the Kelvin probe test indicates that the newly aligned conduction band of SO in the fabricated 2Au/6SO/CN is indispensable to assist developing a proper energy platform for the photocatalytic H2 evolution. This work distinctly provides a feasible strategy to synthesize highly efficient plasmonic‐assisted CN‐based photocatalysts utilized for solar fuel production.  相似文献   

3.
Photocatalysis is the most promising method for achieving artificial photosynthesis, but a bottleneck is encountered in finding materials that could efficiently promote the water splitting reaction. The nontoxicity, low cost, and versatility of photocatalysts make them especially attractive for this application. This study demonstrates that small amounts of α‐Fe2O3 nanosheets can actively promote exfoliation of g‐C3N4, producing 2D hybrid that exhibits tight interfaces and an all‐solid‐state Z‐scheme junction. These nanostructured hybrids present a high H2 evolution rate >3 × 104 µmol g‐1 h‐1 and external quantum efficiency of 44.35% at λ = 420 nm, the highest value so far reported among the family of g‐C3N4 photocatalysts. Besides effectively suppressing the recombination of electron–hole pairs, this Z‐scheme junction also exhibits activity toward overall water splitting without any sacrificial donor. The proposed synthetic route for controlled production of 2D g‐C3N4‐based structures provides a scalable alternative toward the development of highly efficient and active photocatalysts.  相似文献   

4.
Photocatalytic reduction of CO2 with H2O vapor is gaining increased interest because it is a promising “green chemistry” route for the direct conversion of CO2 to value‐added chemicals driven by solar energy. To increase the efficiency of photocatalytic conversion, most efforts are made by exploring various photocatalysts while little effort on advanced light management. For the first time, it is demonstrated that bio‐degradable transparent paper with excellent light diffusivity can effectively enhance the light utilization of photocatalytic reactions when attached on the device surface, and thus greatly increase the conversion efficiency. As a proof‐of‐concept, a graphitic carbon nitride (g‐C3N4) photocatalyst with transparent paper attached, exhibited 1.5 times higher photocatalytic activity than bare g‐C3N4 in the reduction of CO2 under visible light irradiation. The improved catalytic performance can be ascribed to the (1) refractive index matching and (2) enhanced light absorption via prolonged light traveling path in transparent paper, which decreases the light reflection at surface and traps the absorbed light inside, leading to an increased light absorption at the active layer of the device. The transparent paper with a controllable light management behavior has an unprecedented potential for applications in photocatalysis as a general method for improved light utilization.  相似文献   

5.
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (?98 μA cm?2) compared to that of g‐C3N4 photocathode (?32 μA cm?2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of ?133 μA cm?2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.  相似文献   

6.
Efficient spatial charge separation is critical for solar energy conversion over solid photocatalysts. The development of efficient visible‐light photocatalysts has been of immense interest, but with limited success. Here, multiband core–shell oxynitride nanocube heterojunctions composed of a tantalum nitride (Ta3N5) core and nitrogen‐doped sodium tantalate (NaTaON) shell have been constructed via an in situ phase‐induced etching chemical strategy. The photocatalytic water splitting performance of sub‐20‐nm Ta3N5@NaTaON junctions exhibits an extraordinarily high photocatalytic activity toward oxygen and hydrogen evolution. Most importantly, the combined experimental results and theoretical calculations reveal that the strong interfacial Ta? O? N bonding connection as a touchstone among Ta3N5@NaTaON junctions provides a continuous charge transport pathway rather than a random charge accumulation. The prolonged photoexcited charge carrier lifetime and suitable band matching between the Ta3N5 core and NaTaON shell facilitate the separation of photoinduced electron–hole pairs, accounting for the highly efficient photocatalytic performance. This work establishes the use of (oxy)nitride heterojunctions as viable photocatalysts for the conversion of solar energy into fuels.  相似文献   

7.
The primary amine groups on the heptazine‐based polymer melon, also known as graphitic carbon nitride (g‐C3N4), can be replaced by urea groups using a two‐step postsynthetic functionalization. Under simulated sunlight and optimum Pt loading, this urea‐functionalized carbon nitride has one of the highest activities among organic and polymeric photocatalysts for hydrogen evolution with methanol as sacrificial donor, reaching an apparent quantum efficiency of 18% and nearly 30 times the hydrogen evolution rate compared to the nonfunctionalized counterpart. In the absence of Pt, the urea‐derivatized material evolves hydrogen at a rate over four times that of the nonfunctionalized one. Since “defects” are conventionally accepted to be the active sites in graphitic carbon nitride for photocatalysis, the work here is a demonstrated example of “defect engineering,” where the catalytically relevant defect is inserted rationally for improving the intrinsic, rather than extrinsic, photocatalytic performance. Furthermore, the work provides a retrodictive explanation for the general observation that g‐C3N4 prepared from urea performs better than those prepared from dicyandiamide and melamine. In‐depth analyses of the spent photocatalysts and computational modeling suggest that inserting the urea group causes a metal‐support interaction with the Pt cocatalyst, thus facilitating interfacial charge transfer to the hydrogen evolving centers.  相似文献   

8.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

9.
Uncontrolled dendrites resulting from nonuniform lithium (Li) nucleation/growth and Li volume expansion during charging cause serious safety problems for Li anode‐based batteries. Here the coating of nickel foam with graphitic carbon nitride (g‐C3N4) to have a 3D current collector (g‐C3N4@Ni foam) for dendrite‐free Li metal anodes is reported. The lithiophilic g‐C3N4 coupled with the 3D framework is demonstrated to be highly effective for promoting the uniform deposition of Li and suppressing the formation of dendrites. Both density functional theory calculations and experimental studies indicate the formation of a micro‐electric field resulting from the tri‐s‐triazine units of g‐C3N4, which induces numerous Li nuclei during the initial nucleation stage, effectively guiding the following Li growth on the 3D Ni foam to be well distributed. Furthermore, the 3D porous framework is favorable for absorbing any volume change and stabilizing the solid–electrolyte interphase layer during repeated Li plating/stripping. As such, a Li metal anode based on the g‐C3N4@Ni foam has a remarkable electrochemical performance with a high Coulombic efficiency (98% retention after 300 cycles), an ultralong lifespan up to 900 h, as well as a low overpotential (<15 mV at 1.0 mA cm?2) at a Li deposition of 9.0 mA h cm?2.  相似文献   

10.
Tantalum nitride (Ta3N5) with a suitable bandgap (≈2 eV) is regarded as one of the most promising photocatalysts for efficient solar energy harvesting and conversion. However, Ta3N5 suffers from low hydrogen production activity due to the low carrier mobility and fast carrier recombination. Thus, the design of Ta3N5 nanostructures to facilitate charge carrier transport and improve photocatalytic performance remains a challenge. This study reports a new type of ultrathin (≈2 nm) Ta3N5 nanomesh with high specific surface area (284.6 m2 g?1) and excellent crystallinity by an innovative bottom‐up graphene oxide templated strategy. The resulting Ta3N5 nanomeshes demonstrate drastically improved electron transport ability and prolonged lifetime of charge carriers, due to the nature of high surface area and excellent crystallinity. As a result, when used as photocatalysts, the Ta3N5 nanomeshes exhibit a greater than tenfold improvement in solar hydrogen production compared to bulk counterparts. This work provides an effective and generic strategy for designing 2D ultrathin nanomesh structures for nonlayered materials with improved catalytic activity.  相似文献   

11.
The main challenge in developing foldable Li–S batteries (LSB) lies in developing an electrode that is ultraflexible, conductive, and catalytic for dissolved lithium polysulfides (LiPSs). In this paper, lightweight macromolecule graphitic carbon nitride (g‐C3N4) film and a conductive polymer (CP) of poly(3,4‐ethylenedioxythiophene) shell are introduced into flexible LSBs by compositing with carbon cloth (CC). In the designed hybrid of CP/g‐C3N4@CC, 2D g‐C3N4 is used in the form of an effective trapper and functions as a continuous catalytic layer for LiPSs via the formation of pyridinic‐N‐Li bonds. This is revealed by both experimental investigations and theoretical analysis. The sandwich‐like CC and CP simultaneously bring an omnidirectional conductive network for fast interfacial reaction kinetics. With these benefits, the self‐supported CP/g‐C3N4@CC forms a powerful interaction system to fully in situ “lock” LiPSs in the commercial CC matrix. Thus, a substantially enhanced electrochemical performance is obtained at a high sulfur loading (4.7 mg cm–2) even operating in a pouch cell. This work may provide a potential avenue for practical use of high‐performance LSBs toward flexible energy‐storage devices.  相似文献   

12.
The photocatalytic reduction of nitrogen (N2) with water (H2O) as the reducing agent holds great promise as a sustainable future technology for the synthesis of ammonia (NH3). Herein, the effect of oxygen vacancies and electron‐rich Cuδ+ on the performance of zinc‐aluminium layered double hydroxide (ZnAl‐LDH) nanosheet photocatalysts for N2 reduction to NH3 under UV–vis excitation is systematically explored. Results show that a 0.5%‐ZnAl‐LDH nanosheet photocatalyst (containing 0.5 mol% Cu by metal basis) affords a remarkable NH3 production rate of 110 µmol g?1 h?1 and excellent stability in pure water. The X‐ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory calculations reveal that Cu addition imparts oxygen vacancies and coordinatively unsaturated Cuδ+ (δ < 2) with electron‐rich property in the ZnAl‐LDH nanosheets, both of which readily contribute to efficient separation and transfer of photogenerated electrons and holes and promote N2 adsorption, thereby both activating N2 and facilitating its multielectrons reduction to NH3.  相似文献   

13.
Solar‐driven water splitting is in urgent need for sustainable energy research, for which accelerating oxygen evolution kinetics along with charge migration is the key issue. Herein, Mn3+ within π‐conjugated carbon nitride (C3N4) in form of Mn–N–C motifs is coordinated. The spin state (eg orbital filling) of Mn centers is regulated by controlling the bond strength of Mn–N. It is demonstrated that Mn serves as intrinsic oxygen evolution reaction (OER) site and the kinetics is dependent on its spin state with an optimized eg occupancy of ≈0.95. Specifically, the governing role of eg occupancy originates from the varied binding strength between Mn and OER intermediates. Benefiting from the rapid spin state‐mediated OER kinetics, as well as extended optical absorption (to 600 nm) and accelerated charge separation by intercalated metal‐to‐ligand state, Mn–C3N4 stoichiometrically splits pure water with H2 production rate up to 695.1 µmol g?1 h?1 under simulated sunlight irradiation (AM1.5), and achieves an apparent quantum efficiency of 4.0% at 420 nm, superior to most solid‐state based photocatalysts to date. This work for the first time correlates photocatalytic redox kinetics with the spin state of active sites, and suggests a nexus between photocatalysis and spin theory.  相似文献   

14.
A step‐by‐step strategy is reported for improving capacitance of supercapacitor electrodes by synthesizing nitrogen‐doped 2D Ti2CTx induced by polymeric carbon nitride (p‐C3N4), which simultaneously acts as a nitrogen source and intercalant. The NH2CN (cyanamide) can form p‐C3N4 on the surface of Ti2CTx nanosheets by a condensation reaction at 500–700 °C. The p‐C3N4 and Ti2CTx complexes are then heat‐treated to obtain nitrogen‐doped Ti2CTx nanosheets. The triazine‐based p‐C3N4 decomposes above 700 °C; thus, the nitrogen species can be surely doped into the internal carbon layer and/or defect site of Ti2CTx nanosheets at 900 °C. The extended interlayer distance and c‐lattice parameters (c‐LPs of 28.66 Å) of Ti2CTx prove that the p‐C3N4 grown between layers delaminate the nanosheets of Ti2CTx during the doping process. Moreover, 15.48% nitrogen doping in Ti2CTx improves the electrochemical performance and energy storage ability. Due to the synergetic effect of delaminated structures and heteroatom compositions, N‐doped Ti2CTx shows excellent characteristics as an electrochemical capacitor electrode, such as perfectly rectangular cyclic voltammetry results (CVs, R2 = 0.9999), high capacitance (327 F g?1 at 1 A g?1, increased by ≈140% over pristine‐Ti2CTx), and stable long cyclic performance (96.2% capacitance retention after 5000 cycles) at high current density (5 A g?1).  相似文献   

15.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

16.
The photosynthetic efficiency of the CO2‐concentrating mechanism in two forms of single‐cell C4 photosynthesis in the family Chenopodiaceae was characterized. The Bienertioid‐type single‐cell C4 uses peripheral and central cytoplasmic compartments (Bienertia sinuspersici), while the Borszczowioid single‐cell C4 uses distal and proximal compartments of the cell (Suaeda aralocaspica). C4 photosynthesis within a single‐cell raises questions about the efficiency of this type of CO2‐concentrating mechanism compared with the Kranz‐type. We used measurements of leaf CO2 isotope exchange (Δ13C) to compare the efficiency of the single‐cell and Kranz‐type forms of C4 photosynthesis under various temperature and light conditions. Comparisons were made between the single‐cell C4 and a sister Kranz form, S. eltonica[NAD malic enzyme (NAD ME) type], and with Flaveria bidentis[NADP malic enzyme (NADP‐ME) type with Kranz Atriplicoid anatomy]. There were similar levels of Δ13C discrimination and CO2 leakiness (?) in the single‐cell species compared with the Kranz‐type. Increasing leaf temperature (25 to 30 °C) and light intensity caused a decrease in Δ13C and ? across all C4 types. Notably, B. sinuspersici had higher Δ13C and ? than S. aralocaspica under lower light. These results demonstrate that rates of photosynthesis and efficiency of the CO2‐concentrating mechanisms in single‐cell C4 plants are similar to those in Kranz‐type.  相似文献   

17.
Green fluorescent silver (Ag)‐doped graphite carbon nitride (Ag‐g‐C3N4) nanosheets have been fabricated by an ultrasonic exfoliating method. The fluorescence of the Ag‐g‐C3N4 nanosheets is quenched by curcumin. The fluorescence intensity decreases with the increase in the concentration of curcumin, indicating that the Ag‐g‐C3N4 nanosheets can function as a non‐toxic and facile fluorescence probe to detect curcumin. The fluorescence intensity of Ag‐g‐C3N4 nanosheets shows a linear relationship to curcumin in the concentration range 0.01–2.00 μM with a low detection limit of 38 nM. The fluorescence quenching process between curcumin and Ag‐g‐C3N4 nanosheets mainly is based on static quenching. The fluorescent probe has been successfully applied to analyse curcumin in human urine and serum samples with satisfactory results.  相似文献   

18.
Here for the first time the design and optimization are presented of a three‐component Au/TiO2–gC3N4 nanocomposite photocatalyst able to efficiently produce H2 from water using very low amounts of sacrificial agents and under visible light irradiation. This enhanced photocatalytic behavior compared to Au/TiO2 and Au/gC3N4 materials is the result of synergetic effects due to high quality assembly and interface between the three components. This optimized nanoscale assembly characterized by simultaneous favorable nanoheterojunction formation between g‐C3N4 and TiO2 semiconductors, as well as AuNPs/gC3N4 and AuNPs/TiO2 junctions, leads to enhanced visible light harvesting, charge separation, and H2 production. This composite photocatalyst yields a high H2 production (350 µmol?1 h?1 gcatalyst?1) under visible light irradiation with minimal amounts of sacrificial agent (≤1 vol%), corresponding to activities much higher than reported so far under comparable conditions.  相似文献   

19.
Eu3+–β‐diketonate complexes are used, for example, in solid‐state lighting (SSL) or light‐converting molecular devices. However, their low emission quantum efficiency due to water molecules coordinated to Eu3+ and low photostability are still problems to be addressed. To overcome such challenges, we synthesized Eu3+ tetrakis complexes based on [Q][Eu(tfaa)4] and [Q][Eu(dbm)4] (Q1 = C26H56N+, Q2 = C19H42N+, and Q3 = C17H38N+), replacing the water molecules in the tris stoichiometry. The tetrakis β‐diketonates showed desirable thermal stability for SSL and, under excitation at 390 nm, they displayed the characteristic Eu3+ emission in the red spectral region. The quantum efficiencies of the dbm complexes achieved values as high as 51%, while the tfaa complexes exhibited lower quantum efficiencies (28–33%), but which were superior to those reported for the tris complexes. The structures were evaluated using the Sparkle/PM7 model and comparing the theoretical and the experimental Judd–Ofelt parameters. [Q1][Eu(dbm)4] was used to coat a near‐UV light‐emitting diode (LED), producing a red‐emitting LED prototype that featured the characteristic emission spectrum of [Q1][Eu(dbm)4]. The emission intensity of this prototype decreased only 7% after 30 h, confirming its high photostability, which is a notable result considering Eu3+ complexes, making it a potential candidate for SSL.  相似文献   

20.
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water‐limited, rain‐fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m?2 s?1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water‐use efficiencies were higher (2.4–8.1 mmol mol?1) than C3 averages (0.7–6.8 mmol mol?1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号