首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

2.
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries.  相似文献   

3.
4.
Li deposition is observed and measured on a solid electrolyte in the vicinity of a metallic current collector. Four types of ion‐conducting, inorganic solid electrolytes are tested: Amorphous 70/30 mol% Li2S‐P2S5, polycrystalline β‐Li3PS4, and polycrystalline and single‐crystalline Li6La3ZrTaO12 garnet. The nature of lithium plating depends on the proximity of the current collector to defects such as surface cracks and on the current density. Lithium plating penetrates/infiltrates at defects, but only above a critical current density. Eventually, infiltration results in a short circuit between the current collector and the Li‐source (anode). These results do not depend on the electrolytes shear modulus and are thus not consistent with the Monroe–Newman model for “dendrites.” The observations suggest that Li‐plating in pre‐existing flaws produces crack‐tip stresses which drive crack propagation, and an electrochemomechanical model of plating‐induced Li infiltration is proposed. Lithium short‐circuits through solid electrolytes occurs through a fundamentally different process than through liquid electrolytes. The onset of Li infiltration depends on solid‐state electrolyte surface morphology, in particular the defect size and density.  相似文献   

5.
Solid polymer electrolytes (SPEs) are desirable in lithium metal batteries (LMBs) since they are nonflammable and show excellent lithium dendrite growth resistance. However, fabricating high performance polymer LMBs is still a grand challenge because of the complex battery system. In this work, a series of tailor‐designed hybrid SPEs are used to prepare LMBs with a LiFePO4‐based cathode. High performance LMBs with both excellent rate capability and long cycle life are obtained at 60 and 90 °C. The well‐controlled network structure in this series of hybrid SPEs offers a model system to study the relationship between the SPE properties and the LMB performance. It is shown that the cycle life of the polymer LMBs is closely correlated with the SPE–Li interface ionic conductivity, underscoring the importance of the solid electrolyte interface in LMB operation. LMB performance is further correlated with the molecular network structure. It is anticipated that results from this study will shed light on designing SPEs for high performance LMB applications.  相似文献   

6.
Owing to the ever‐increasing safety concerns about conventional lithium‐ion batteries, whose applications have expanded to include electric vehicles and grid‐scale energy storage, batteries with solidified electrolytes that utilize nonflammable inorganic materials are attracting considerable attention. In particular, owing to their superionic conductivities (as high as ≈10?2 S cm?1) and deformability, sulfide materials as the solid electrolytes (SEs) are considered the enabling material for high‐energy bulk‐type all‐solid‐state batteries. Herein the authors provide a brief review on recent progress in sulfide Li‐ and Na‐ion SEs for all‐solid‐state batteries. After the basic principles in designing SEs are considered, the experimental exploration of multicomponent systems and ab initio calculations that accelerate the search for stronger candidates are discussed. Next, other issues and challenges that are critical for practical applications, such as instability in air, electrochemical stability, and compatibility with active materials, are discussed. Then, an emerging progress in liquid‐phase synthesis and solution process of SEs and its relevant prospects in ensuring intimate ionic contacts and fabricating sheet‐type electrodes is highlighted. Finally, an outlook on the future research directions for all‐solid‐state batteries employing sulfide superionic conductors is provided.  相似文献   

7.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

8.
A critical barrier to overcome in the development of solid‐state electrolytes for lithium batteries is the trade‐off between sacrificing ionic conductivity for enhancement of mechanical stiffness. Here, a physically cross‐linked, polymer‐supported gel electrolyte consisting of a lithium salt/ionic liquid solution featuring a fully zwitterionic (ZI) copolymer network is introduced for rechargeable lithium‐based batteries. The ZI scaffold is synthesized using a 3:1 molar ratio of 2‐methacryloyloxyethyl phosphorylcholine and sulfobetaine vinylimidazole, and the total polymer content is varied between 1.1 and 12.5 wt%. Room‐temperature ionic conductivity values comparable to the base liquid electrolyte (≈1 mS cm?1) are achieved in ZI copolymer‐supported gels that display compressive elastic moduli as large as 14.3 MPa due to ZI dipole–dipole cross‐links. Spectroscopic characterization suggests a change in the Li+ coordination shell upon addition of the zwitterions, indicative of strong Li+···ZI group interactions. Li+ transference number measurements reveal an increase in Li+ conductivity within a ZI gel electrolyte ( nearly doubles). ZI gels display enhanced stability against Li metal, dendrite suppression, and suitable charge–discharge performance in a graphite|lithium nickel cobalt manganese oxide cell. Fully ZI polymer networks in nonvolatile, ionic liquid‐based electrolytes represent a promising approach toward realizing highly conductive, mechanically rigid gels for lithium battery technologies.  相似文献   

9.
10.
The charge transfer kinetics between a lithium metal electrode and an inorganic solid electrolyte is of key interest to assess the rate capability of future lithium metal solid state batteries. In an in situ microelectrode study run in a scanning electron microscope, it is demonstrated that—contrary to the prevailing opinion—the intrinsic charge transfer resistance of the Li|Li6.25Al0.25La3Zr2O12 (LLZO) interface is in the order of 10?1 Ω cm2 and thus negligibly small. The corresponding high exchange current density in combination with the single ion transport mechanism (t+ ≈ 1) of the inorganic solid electrolyte enables extremely fast plating kinetics without the occurrence of transport limitations. Local plating rates in the range of several A cm?2 are demonstrated at defect free and chemically clean Li|LLZO interfaces. Practically achievable current densities are limited by lateral growth of lithium along the surface as well as electro‐chemo‐mechanical‐induced fracture of the solid electrolyte. In combination with the lithium vacancy diffusion limitation during electrodissolution, these morphological instabilities are identified as the key fundamental limitations of the lithium metal electrode for solid‐state batteries with inorganic solid electrolytes.  相似文献   

11.
All‐solid‐state sodium metal batteries (SSMBs) are of great interest for their high theoretical capacity, nonflammability, and relatively low cost owing partially to the abundance of sodium recourses. However, it is challenging to fabricate SSMBs because compared with their counterparts, which contain lithium metal, sodium metal is mechanically softer and more reactive toward the electrolyte. Herein, the synthesis and electrochemical properties of newly designed sodium‐containing hybrid network solid polymer electrolytes (SPEs) and their application in SSMBs are reported. The hybrid network is synthesized by controlled crosslinking of octakis(3‐glycidyloxypropyldimethylsiloxy)octasilsesquioxane and amine‐terminated polyethylene glycol in existence with sodium perchlorate (NaClO4). Plating and stripping experiments using symmetric cells show prolonged cycle life of the SPEs, >5150 and 3550 h at current density of 0.1 and 0.5 mA cm?2, respectively. The results for the first time show that the SPE|sodium metal interface migrates into the SPE phase upon cycling. SSMBs fabricated with the hybrid SPE sandwiched between sodium metal anode and bilayered δ‐NaxV2O5 cathode exhibit record‐high specific capacity for solid sodium‐ion batteries of 305 mAh g?1 and excellent Coulombic efficiency. This work demonstrates that the hybrid network SPEs are promising for SSMB applications.  相似文献   

12.
Ionic liquids (ILs) are important electrolytes for applications in electrochemical devices. An emerging trend in ILs research is their hybridization with solid matrices, named ionogels. These ionogels can not only overcome the fluidity of ILs but also exhibit high mechanical strength of the solid matrix. Therefore, they show promise for applications in building lithium batteries. In this review, various types of solid matrices for confining ILs are summarized, including nonmetallic oxides, metal oxides, IL‐tethered nanoparticles, functionalized SiO2, metal–organic frameworks, and other structural materials. The synthetic strategies for ionogels are first documented, focusing on physical confinement and covalent grafting. Then, the structure, ionic conductivity, thermal stability, and electrochemical stability of ionogels are addressed in detail. Furthermore, the authors highlight the potential applications of state‐of‐art ionogels in lithium batteries. The authors conclude this review by outlining the remaining challenges as well as personal perspectives on this hot area of research.  相似文献   

13.
14.
Interfacial reactions between ceramic‐sulfide solid‐electrolytes and common electrodes have remained a major impediment to the development of solid‐state lithium‐ion batteries. In practice, this means that ceramic‐sulfide batteries require a suitable coating material to isolate the electrolyte from the electrode materials. In this work, the interfacial stability of Li10SiP2S12 with over 67 000 materials is computationally evaluated. Over 2000 materials that are predicted to form stable interfaces in the cathode voltage range and over 1000 materials for the anode range are reported on and cataloged. LiCoO2 is chosen as an example cathode material to identify coating compounds that are stable with both Li10SiP2S12 and a common cathode. The correlation between elemental composition and multiple instability metrics (e.g., chemical/electrochemical) is analyzed, revealing key trends in, amongst others, the role of anion selection. A new binary‐search algorithm is introduced for evaluating the pseudo‐phase with improved speed and accuracy. Computational challenges posed by high‐throughput interfacial phase‐diagram calculations are highlighted as well as pragmatic computational methods to make such calculations routinely feasible. In addition to the over 3000 materials cataloged, representative materials from the anionic classes of oxides, fluorides, and sulfides are chosen to experimentally demonstrate chemical stability when in contact with Li10SiP2S12.  相似文献   

15.
The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5 with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5 sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5 sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors.  相似文献   

16.
Li7La3Zr2O12 (LLZO) garnet‐based materials doped with Al, Nb, or Ta to stabilize the Li+‐conductive cubic phase are a particularly promising class of solid electrolytes for all‐solid‐state lithium metal batteries. Understanding of the intrinsic reactivity between solid electrolytes and relevant electrode materials is crucial to developing high voltage solid‐state batteries with long lifetimes. Using a novel, surface science‐based approach to characterize the intrinsic reactivity of the Li–solid electrolyte interface, it is determined that, surprisingly, some degree of Zr reduction takes place for all three dopant types, with the extent of reduction increasing as Ta < Nb < Al. Significant reduction of Nb also takes place for Nb‐doped LLZO, with electrochemical impedance spectroscopy (EIS) of Li||Nb–LLZO||Li symmetric cells further revealing significant increases in impedance with time and suggesting that the Nb reduction propagates into the bulk. Density functional theory (DFT) calculations reveal that Nb‐doped material shows a strong preference for Nb dopants toward the interface between LLZO and Li, while Ta does not exhibit a similar preference. EIS and DFT results, coupled with the observed reduction of Zr at the interface, are consistent with the formation of an “oxygen‐deficient interphase” (ODI) layer whose structure determines the stability of the LLZO–Li interface.  相似文献   

17.
18.
19.
A combination of high ionic conductivity and facile processing suggest that sulfide‐based materials are promising solid electrolytes that have the potential to enable Li metal batteries. Although the Li2S‐P2S5 (LPS) family of compounds exhibit desirable characteristics, it is known that Li metal preferentially propagates through microstructural defects, such as particle boundaries and/or pores. Herein, it is demonstrated that a near theoretical density (98% relative density) LPS 75‐25 glassy electrolyte exhibiting high ionic conductivity can be achieved by optimizing the molding pressure and temperature. The optimal molding pressure reduces porosity and particle boundaries while preserving the preferred amorphous structure. Moreover, molecular rearrangements and favorable Li coordination environments for conduction are attained. Consequently, the Young's Modulus approximately doubles (30 GPa) and the ionic conductivity increases by a factor of five (1.1 mS cm?1) compared to conventional room temperature molding conditions. It is believed that this study can provide mechanistic insight into processing‐structure‐property relationships that can be used as a guide to tune microstructural defects/properties that have been identified to have an effect on the maximum charging current that a solid electrolyte can withstand during cycling without short‐circuiting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号