首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

4.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

5.
6.
7.
8.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   

9.
Metal oxide cathode coatings are capable of scavenging the hydrofluoric acid (HF) (present in LiPF6‐based electrolytes) and improving the electrochemical performance of Li‐ion batteries. Here, a first‐principles thermodynamic framework is introduced for designing cathode coatings that consists of four elements: i) HF‐scavenging enthalpies, ii) volumetric and iii) gravimetric HF‐scavenging capacities of the oxides, and iv) cyclable Li loss into coating components. 81 HF‐scavenging reactions involving binary s‐, p‐ and d‐block metal oxides and fluorides are enumerated and these materials are screened to find promising coatings based on attributes (i‐iv). The screen successfully produces known effective coating materials (e.g., Al2O3 and MgO), providing a validation of our framework. Using this design strategy, promising coating materials, such as trivalent oxides of d‐block transition metals Sc, Ti, V, Cr, Mn and Y, are predicted. Finally, a new protection mechanism that successful coating materials could provide by scavenging the wide bandgap and low Li ion conductivity LiF precipitates from the cathode surfaces is suggested.  相似文献   

10.
11.
12.
Autonomic, thermally‐induced shutdown of Lithium‐ion (Li‐ion) batteries is demonstrated by incorporating thermoresponsive polymer microspheres (ca. 4 μm) onto battery anodes or separators. When the internal battery environment reaches a critical temperature, the microspheres melt and coat the anode/separator with a nonconductive barrier, halting Li‐ion transport and shutting down the cell permanently. Three functionalization schemes are shown to perform cell shutdown: 1) poly(ethylene) (PE) microspheres coated on the anode, 2) paraffin wax microspheres coated on the anode, and 3) PE microspheres coated on the separator. Charge and discharge capacity is measured for Li‐ion coin cells containing microsphere‐coated anodes or separators as a function of capsule coverage. For PE coated on the anode, the initial capacity of the battery is unaffected by the presence of the PE microspheres up to a coverage of 12 mg cm?2 (when cycled at 1C), and full shutdown (>98% loss of initial capacity) is achieved in cells containing greater than 3.5 mg cm?2. For paraffin microspheres coated on the anode and PE microspheres coated on the separator, shutdown is achieved in cells containing coverages greater than 2.9 and 13.7 mg cm?2, respectively. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and resolidification of PE into the anode and polymer film formation at the anode/separator interface.  相似文献   

13.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.  相似文献   

14.
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium‐ion batteries. However, co‐intercalation of lithium‐ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium–solvent]+ intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First‐principles calculations suggest that the chemical compatibility of the graphite host and [lithium–solvent]+ complex ion strongly affects the reversibility of the co‐intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium–ether]+ co‐intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of ≈87% of the theoretical capacity at current density of 1 A g?1. This unusual high rate capability of the co‐intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid–electrolyte interphase on graphite surface, and (iii) fast charge‐transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium–solvent]+ complex ion intercalation chemistry in graphite for rechargeable battery technology.  相似文献   

15.
Rechargeable ion batteries have contributed immensely to shaping the modern world and been seriously considered for the efficient storage and utilization of intermittent renewable energies. To fulfill their potential in the future market, superior battery performance of high capacity, great rate capability, and long lifespan is undoubtedly required. In the past decade, along with discovering new electrode materials, the focus has been shifting more and more toward rational electrode designs because the performance is intimately connected to the electrode architectures, particularly their designs at the nanoscale that can alleviate the reliance on the materials' intrinsic nature. The utilization of nanoarchitectured arrays in the design of electrodes has been proven to significantly improve the battery performance. A comprehensive summary of the structural features and fabrications of the nanoarchitectured array electrodes is provided, and some of the latest achievements in the area of both lithium‐ and sodium‐ion batteries are highlighted. Finally, future challenges and opportunities that would allow further development of such advanced electrode configuration are discussed.  相似文献   

16.
Advanced electrode materials with bendability and stretchability are critical for the rapid development of fully flexible/stretchable lithium‐ion batteries. However, the sufficiently stretchable lithium‐ion battery is still underdeveloped that is one of the biggest challenges preventing from realizing fully deformable power sources. Here, a low‐temperature hydrothermal synthesis of a cathode material for stretchable lithium‐ion battery is reported by the in situ growth of LiMn2O4 (LMO) nanocrystals inside 3D carbon nanotube (CNT) film networks. The LMO/CNT film composite has demonstrated the chemical bonding between the LMO active materials and CNT scaffolds, which is the most important characteristic of the stretchable electrodes. When coupled with a wrinkled MnOx /CNT film anode, a binder‐free, all‐manganese‐based stretchable full battery cell is assembled which delivers a high average specific capacity of ≈97 mA h g?1 and stabilizes after over 300 cycles with an enormous strain of 100%. Furthermore, combining with other merits such as low cost, natural abundance, and environmentally friendly, the all‐manganese design is expected to accelerate the practical applications of stretchable lithium‐ion batteries for fully flexible and biomedical electronics.  相似文献   

17.
Iron oxides, such as Fe2O3 and Fe3O4, have recently received increased attention as very promising anode materials for rechargeable lithium‐ion batteries (LIBs) because of their high theoretical capacity, non‐toxicity, low cost, and improved safety. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, recent research progress in the rational design and synthesis of diverse iron oxide‐based nanomaterials and their lithium storage performance for LIBs, including 1D nanowires/rods, 2D nanosheets/flakes, 3D porous/hierarchical architectures, various hollow structures, and hybrid nanostructures of iron oxides and carbon (including amorphous carbon, carbon nanotubes, and graphene). By focusing on synthesis strategies for various iron‐oxide‐based nanostructures and the impacts of nanostructuring on their electrochemical performance, novel approaches to the construction of iron‐oxide‐based nanostructures are highlighted and the importance of proper structural and compositional engineering that leads to improved physical/chemical properties of iron oxides for efficient electrochemical energy storage is stressed. Iron‐oxide‐based nanomaterials stand a good chance as negative electrodes for next generation LIBs.  相似文献   

18.
In recent years, the electrochemical power sources community has launched massive research programs, conferences, and workshops on the “post Li battery era.” However, in this report it is shown that the quest for post Li‐ion and Li battery technologies is incorrect in its essence. This is the outcome of a three day discussion on the future technologies that could provide an answer to a question that many ask these days: Which are the technologies that can be regarded as alternative to Li‐ion batteries? The answer to this question is a rather surprising one: Li‐ion battery technology will be here for many years to come, and therefore the use of “post Li‐ion” battery technologies would be misleading. However, there are applications with needs for which Li‐ion batteries will not be able to provide complete technological solutions, as well as lower cost and sustainability. In these specific cases, other battery technologies will play a key role. Here, the term “side‐by‐side technologies” is coined alongside a discussion of its meaning. The progress report does not cover the topic of Li‐metal battery technologies, but covers the technologies of sodium‐ion, multivalent, metal–air, and flow batteries.  相似文献   

19.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号