首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Calendar aging of lithium metal batteries, in which cells' components degrade internally due to chemical reactions while no current is being applied, is a relatively unstudied field. In this work, a model to predict calendar aging of lithium metal cells is developed using two sets of readily obtainable data: solid electrolyte interphase (SEI) layer composition (measured via X‐ray photoelectron spectroscopy) and SEI stability (measured as a degradation rate using a simple constant current–constant voltage charging protocol). Electrolyte properties such as volume and salt concentration are varied in order to determine their effect on SEI stability and composition, with subsequent impacts to calendar aging. Lower salt concentrations produce a solvent‐based, more soluble SEI, while the highest concentration produces a salt‐based, less soluble SEI. Higher electrolyte volumes promote dissolution of the SEI and thus decrease its stability. The model predicts that lithium metal would be the limiting factor in calendar aging, depleting long before the electrolyte does. Additionally, the relative composition of the electrolyte during aging is modeled and found to eventually converge to the same value independent of initial salt concentration.  相似文献   

5.
6.
7.
Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high‐energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high‐surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ‐Al2O3 ceramics with pore diameters below a cut‐off value above 200 nm exhibit long‐term stability even at a current density of 3 mA cm?2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.  相似文献   

8.
Lithium–oxygen batteries are in fact the only rechargeable batteries that can rival internal combustion engines, in terms of high energy density. However, they are still under development due to low‐efficiency and short lifetime issues. There are problems of side reactions on the cathode side, high reactivity of the Li anode with solution species, and consumption of redox mediators via reactions with metallic lithium. Therefore, efforts are made to protect/block the lithium metal anode in these cells, in order to mitigate side reactions. However, new approach is required in order to solve the problems mentioned above, especially the irreversible reactions of the redox mediators which are mandatory to these systems with the Li anode. Here, optimized bicompartment two solution cells are proposed, in which detrimental crossover between the cathode and anode is completely avoided. The Li metal anode is cycled in electrolyte solution containing fluorinated ethylene carbonate, in which its cycling efficiency is excellent. The cathode compartment contains ethereal solution with redox mediator that enables oxidation of Li2O2 at low potentials. The electrodes are separated by a solid electrolyte membrane, allowing free transport of Li ions. This approach increases cycle life of lithium oxygen cells and their energy efficiency.  相似文献   

9.
10.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

11.
12.
13.
Over the last 40 years, metallic lithium as an anode material has been of great interest owing to its high energy density. However, dendritic lithium growth causes serious safety issues. Awareness and understanding of the Li deposition and stripping processes have grown rapidly especially in recent years, and consequently, there have been many attempts to suppress the Li dendrites. Recent developments that have modified the electrolytes and the Li anode in order to inhibit the growth of Li dendrite and improve cycling performance are summarized. It has been shown that current density, solid‐electrolyte interphase (SEI) film, Li+ transference number, and shear modulus have significant impact on the growth behavior and the Coulombic efficiency. Various methods have been introduced to increase the surface area of the Li anode, enhance Li+ conductivity, form stable SEI film, and improve mechanical strength of electrolytes. These approaches are discussed in details, and the perspectives regarding the future use of Li anode are also outlined. It is hoped that this review will facilitate the future development of Li metal batteries.  相似文献   

14.
15.
16.
17.
Herein, a new solvation strategy enabled by Mg(NO3)2 is introduced, which can be dissolved directly as Mg2+ and NO3? ions in the electrolyte to change the Li+ ion solvation structure and greatly increase interfacial stability in Li‐metal batteries (LMBs). This is the first report of introducing Mg(NO3)2 additives in an ester‐based electrolyte composed of ternary salts and binary ester solvents to stabilize LMBs. In particular, it is found that NO3? efficiently forms a stable solid electrolyte interphase through an electrochemical reduction reaction, along with the other multiple anion components in the electrolyte. The interaction between Li+ and NO3? and coordination between Mg2+ and the solvent molecules greatly decreases the number of solvent molecules surrounding the Li+, which leads to facile Li+ desolvation during plating. In addition, Mg2+ ions are reduced to Mg via a spontaneous chemical reaction on the Li metal surface and subsequently form a lithiophilic Li–Mg alloy, suppressing lithium dendritic growth. The unique solvation chemistry of Mg(NO3)2 enables long cycling stability and high efficiency of the Li‐metal anode and ensures an unprecedented lifespan for a practical pouch‐type LMB with high‐voltage Ni‐rich NCMA73 cathode even under constrained conditions.  相似文献   

18.
The garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.  相似文献   

19.
Lithium ion batteries (LIBs) continuously prove themselves to be the main power source in consumer electronics and electric vehicles. To ensure environmental sustainability, LIBs must be capable of performing well at extreme temperatures, that is, between ?40 and 60 °C. In this review, the recent important progress and advances in the subzero and elevated temperature operations of LIBs is comprehensively summarized from a materials perspective. In the scenario of subzero temperatures, limitations, electrolytes, anodes, and solid electrolyte interphase (SEI); cathodes and cathode electrolyte interphase (CEI); and binders are thoroughly discussed to explore the fundamentals and basics that underlie the decay in electrochemical performance and how the chemistry, physics, and electrochemistry are correlated with the materials and components that interact with each other. In the case of high temperatures limitations, the thermal stability of the key materials and components are reviewed, and then the reaction thermodynamics and kinetics of the anodes, cathodes, electrolytes, and their interactions are described using the highest occupied molecular orbit (HOMO)/lowest unoccupied molecular orbit (LUMO), and are extensively discussed. The prospect of combining the extreme temperature poles in a single cell by introducing appropriate electrolytes and additives is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号