首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two dimensional (2D) nanomaterials are very attractive due to their unique structural and surface features for energy storage applications. Motivated by the recent pioneering works demonstrating “the emergent pseudocapacitance of 2D nanomaterials,” the energy storage and nanoscience communities could revisit bulk layered materials though state‐of‐the‐art nanotechnology such as nanostructuring, nanoarchitecturing, and compositional control. However, no review has focused on the fundamentals, recent progress, and outlook on this new mechanism of 2D nanomaterials yet. In this study, the key aspects of emergent pseudocapacitors based on 2D nanomaterials are comprehensively reviewed, which covers the history, classification, thermodynamic and kinetic aspects, electrochemical characteristics, and design guidelines of materials for extrinsically surface redox and intercalation pseudocapacitors. The structural and compositional controls of graphene and other carbon nanosheets, transition metal oxides and hydroxides, transition metal dichalcogenides, and metal carbide/nitride on both microscopic and macroscopic levels will be particularly addressed, emphasizing the important results published since 2010. Finally, perspectives on the current impediments and future directions of this field are offered. Unlimited combinations and modifications of 2D nanomaterials can provide a rational strategy to overcome intrinsic limitations of existing materials, offering a new‐generation energy storage materials toward a high and new position in the Ragone plot.  相似文献   

2.
Several strategies have been employed to improve the performance of energy storage devices through the development of new electrode materials. The construction of transition metal compound composite electrodes plays an important role in promoting the performance of energy storage devices. However, understandings of and insight into how to enhance the composites properties are rarely reported. Taking nickel‐based compounds as an example, Ni3N@Ni3S2 hybrid nanosheets are reported as a high‐performance anode material for lithium‐ion batteries that delivers higher lithium storage properties than the pristine Ni3N and Ni3S2 electrodes. This demonstrates that the phase boundaries between the Ni3N and Ni3S2 may contribute additional lithium storage, which leads to a synergistic effect via the high pseudocapacitance contribution from the outstanding conductivity of Ni3N and enhanced diffusion‐controlled capacity of Ni3S2. The use of composites prepared through sulfuration of hydrothermally annealed nickel hydroxide‐based precursor provides an enhancement of the energy storage properties. These results provide an important approach for increasing the electrochemical activity of composites by the combined effect of interfacial mismatch and pseudocapacitance, as well as understandings of the mechanism of the enhancement of the composite electrode properties.  相似文献   

3.
Supercapacitors attract great interest because of the increasing and urgent demand for environment‐friendly high‐power energy sources. Ti3C2, a member of MXene family, is a promising electrode material for supercapacitors owing to its excellent chemical and physical properties. However, the highest gravimetric capacitance of the MXene‐based electrodes is still relatively low (245 F g?1) and the key challenge to improve this is to exploit more pseudocapacitance by increasing the active site concentration. Here, a method to significantly improve the gravimetric capacitance of Ti3C2Tx MXenes by cation intercalation and surface modification is reported. After K+ intercalation and terminal groups (OH?/F?) removing , the intercalation pseudocapacitance is three times higher than the pristine MXene, and MXene sheets exhibit a significant enhancement (about 211% of the origin) in the gravimetric capacitance (517 F g?1 at a discharge rate of 1 A g?1). Moreover, the as‐prepared electrodes show above 99% retention over 10 000 cycles. This improved electrochemical performance is attributed to the large interlayer voids of Ti3C2 and lowest terminated surface group concentration. This study demonstrates a new strategy applicable to other MXenes (Ti2CTx , Nb2CTx , etc.) in maximizing their potential applications in energy storage.  相似文献   

4.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   

5.
Sodium‐ion batteries are considered alternatives to lithium‐ion batteries for energy storage devices due to their competitive cost and source abundance. However, the development of electrode materials with long‐term stability and high capacity remains a great challenge. Here, this paper describes for the first time the synthesis of a new class of core–shell MAX@K2Ti8O17 by alkaline hydrothermal reaction and hydrogenation of MAX, which grants high sodium ion‐intercalation pseudocapacitance. This composite electrode displays extraordinary reversible capacities of 190 mA h g?1 at 200 mA g?1 (0.9 C, theoretical value of ≈219 mA h g?1) and 150 mA h g?1 at 1000 mA g?1 (4.6 C). More importantly, a reversible capacity of 75 mA h g?1 at 10 000 mA g?1 (46 C) is retained without any apparent capacity decay even after more than 10 000 cycles. Experimental tests and first‐principle calculations confirm that the increase in Ti3+ on the surface layers of MAX@K2Ti8O17 by hydrogenation increases its conductivity in addition to enhancing the sodium‐ion intercalation pseudocapacitive process. Furthermore, the distorted dodecahedrons between Ti and O layers not only provide abundant sites for sodium‐ion accommodation but also act as wide tunnels for sodium‐ion transport.  相似文献   

6.
7.
8.
9.
《Ibis》1930,72(S1):458-461
A part from considerations as to where it is best wedged into the linear sequence, the brachyptera group is defined in general terms as a compact group of four small or very small species which resemble one another in many important specific characters and the other thirty-six species classified here as Cisticola in so many ways of form, coloration and behaviour as to make them best understood by classifying them also under that generic name.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
《Ibis》1930,72(S1):411-413
T he two giants of the genus-that is so far as the cock birds are concerned, but, as with chiniana and a few others, their hens are so much smaller that even when in the field the two sexes are seen in company one may often doubt their being a pair of the same species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号