首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triplite‐type LiFeSO4F has attracted considerable attention as a promising cathode for next‐generation lithium‐ion batteries because of its high redox potential based on earth‐abundant Fe2+/3+. However, successful extraction/reinsertion of all the lithium ions in triplite host is challenging even at a low current rate, resulting in a low specific capacity. These experimental findings contrast with previous theoretical works that predicted that the triplite structure would be a fast ionic conductor with low activation barriers for lithium‐ion hopping. Origin of this discrepancy is elusive to date. Herein, combined first‐principles calculations and high‐angle annular dark‐field scanning transmission electron microscopy analyses reveal that typical triplite structure is composed of nanodomains consisting of corner‐shared FeO4F2 octahedra, whereas their domain boundaries are regions of mixed corner/edge‐shared FeO4F2 octahedra. More importantly, these locally disordered domain boundaries significantly reduce the overall lithium diffusivity of the materials. Inspired by these findings, this study redesigns triplite structure with sufficiently small sizes to avoid local bottlenecks arising from the domain boundaries, successfully achieving nearly full lithium extraction/reinsertion with high power and energy density. This work represents the first direct observation of the presence of domain boundaries within a crystalline structure playing a critical role in governing the lithium diffusivity in a battery electrode.  相似文献   

2.
Three‐dimensional mesoporous TiO2‐Sn/C core‐shell nanowire arrays are prepared on Ti foil as anodes for lithium‐ion batteries. Sn formed by a reduction of SnO2 is encapsulated into TiO2 nanowires and the carbon layer is coated onto it. For additive‐free, self‐supported anodes in Li‐ion batteries, this unique core‐shell composite structure can effectively buffer the volume change, suppress cracking, and improve the conductivity of the electrode during the discharge‐charge process, thus resulting in superior rate capability and excellent long‐term cycling stability. Specifically, the TiO2‐Sn/C nanowire arrays display rechargeable discharge capacities of 769, 663, 365, 193, and 90 mA h g?1 at 0.1C, 0.5C, 2C 10C, and 30C, respectively (1C = 335 mA g?1). Furthermore, the TiO2‐Sn/C nanowire arrays exhibit a capacity retention rate of 84.8% with a discharge capacity of over 160 mA h g?1, even after 100 cycles at a high current rate of 10C.  相似文献   

3.
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g?1 (846 W h kg?1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g?1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.  相似文献   

4.
NaVPO4F has received a great deal of attention as cathode material for Na‐ion batteries due to its high theoretical capacity (143 mA h g?1), high voltage platform, and structural stability. Novel NaVPO4F/C nanofibers are successfully prepared via a feasible electrospinning method and subsequent heat treatment as self‐standing cathode for Na‐ion batteries. Based on the morphological and microstructural characterization, it can be seen that the NaVPO4F/C nanofibers are smooth and continuous with NaVPO4F nanoparticles (≈6 nm) embedded in porous carbon matrix. For Na‐storage, this electrode exhibits extraordinary electrochemical performance: a high capacity (126.3 mA h g?1 at 1 C), a superior rate capability (61.2 mA h g?1 at 50 C), and ultralong cyclability (96.5% capacity retention after 1000 cycles at 2 C). 1D NaVPO4F/C nanofibers that interlink into 3D conductive network improve the conductivity of NaVPO4F, and effectively restrain the aggregation of NaVPO4F particles during charge/discharge process, leading to the high performance.  相似文献   

5.
An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium‐ion (Li‐ion) storage performance is derived for the first time through hydrolysis and thermal self‐assembly of the solid alkoxide precursor. Mesoporous anodes composed of these ≈9 nm‐sized SnO2 particles exhibit substantially higher specific capacities, rate performance, coulombic efficiency, and cycling stabilities compared with disordered nanoparticles and commercial SnO2. A discharge capacity of 778 mAh g–1, which is very close to the theoretical limit of 781 mAh g–1, is achieved at a current density of 0.1 C. Even at high rates of 2 C (1.5 A g–1) and 6 C (4.7 A g–1), these ordered SnO2 nanoparticles retain stable specific capacities of 430 and 300 mAh g–1, respectively, after 100 cycles. Interconnection between individual nanoparticles and structural integrity of the SnO2 electrodes are preserved through numerous charge–discharge process cycles. The significantly better electrochemical performance of ordered SnO2 nanoparticles with a tap density of 1.60 g cm–3 is attributed to the superior electrode/electrolyte contact, Li‐ion diffusion, absence of particle agglomeration, and improved strain relaxation (due to tiny space available for the local expansion). This comprehensive study demonstrates the necessity of mesoporosity and interconnection between individual nanoparticles for improving the Li‐ion storage electrochemical performance of SnO2 anodes.  相似文献   

6.
Li‐rich layered metal oxides are one type of the most promising cathode materials in lithium‐ion batteries but suffer from severe voltage decay during cycling because of the continuous transition metal (TM) migration into the Li layers. A Li‐rich layered metal oxide Li1.2Ti0.26Ni0.18Co0.18Mn0.18O2 (LTR) is hereby designed, in which some of the Ti4+ cations are intrinsically present in the Li layers. The native Li–Ti cation mixing structure enhances the tolerance for structural distortion and inhibits the migration of the TM ions in the TMO2 slabs during (de)lithiation. Consequently, LTR exhibits a remarkable cycling stability of 97% capacity retention after 182 cycles, and the average discharge potential drops only 90 mV in 100 cycles. In‐depth studies by electron energy loss spectroscopy and aberration‐corrected scanning transmission electron microscopy demonstrate the Li–Ti mixing structure. The charge compensation mechanism is uncovered with X‐ray absorption spectroscopy and explained with the density function theory calculations. These results show the superiority of introducing transition metal ions into the Li layers in reinforcing the structural stability of the Li‐rich layered metal oxides. These findings shed light on a possible path to the development of Li‐rich materials with better potential retention and a longer lifespan.  相似文献   

7.
The Li‐rich layer‐structured oxides are regarded one of the most promising candidates of cathode materials for high energy‐density Li‐ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered material is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li‐rich layer‐structured Li1.2Mo0.6Fe0.2O2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In‐depth studies such as aberration‐corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X‐ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. This new strategy provides revelation for the development of the Li‐rich layered oxides with mitigated potential decay and a longer lifespan.  相似文献   

8.
A symmetric solid‐state battery based on organic porous electrodes is fabricated using scalable spray‐printing. The active electrode material is based on a textile dye (disperse blue 134 anthraquinone) and is capable of forming divalent cations and anions in oxidation and reduction processes. The resulting molecule can be used in both negative and positive electrode reactions. After spray printing an inter‐connected pore honeycomb electrode, a solid‐state electrolyte (σLi: × 10?4 S cm?1) based on a polymeric ionic liquid is spray‐printed as a second layer and infiltrated through the porous electrodes. A symmetric all‐organic battery is then formed with the addition of another identical set of electrode and electrolyte layers. Both density functional theory calculations and charge‐discharge profiles show that the potentials for the negative and positive electrode reactions are amongst the lowest (≈2.0 V vs Li) and the highest (≈3.5 V vs Li), respectively, for quinone‐type molecules. Over the C‐rate range 0.2 to 5 C, the battery has a discharge cell voltage of more than 1 V even up to 250 charge‐discharge cycles and capacities are in the range 50–80 mA h g?1 at 0.5 C.  相似文献   

9.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

10.
Using fast time‐resolved in situ X‐ray diffraction, charge‐rate dependent phase transition processes of layer structured cathode material LiNi1/3Mn1/3Co1/3O2 for lithium‐ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half‐way charging at high rate, sample studied by scanning transmission electron microscopy shows Li‐rich and Li‐poor phases' coexistence with tetrahedral occupation of Li in Li‐poor phase. The high rate induced overpotential is thought to be the driving force for the formation of this intermediate Li‐poor phase. The in situ quick X‐ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni4+ state can be reached at the end of charge with 30C rate. These results give new insights in the understanding of the layered cathodes during high‐rate charging.  相似文献   

11.
Promising lithium–oxygen batteries (LOBs) with extra‐high capacities have attracted increasing attention for use in future electric devices. However, the challenges facing this complicated battery system still limit their practical applications. These challenges mainly consist of inefficient product evolution and low‐activity catalysts. In present work, a cation occupying, modified 3D‐architecture NiFeO cubic spinel is constructed via superassembly strategy to achieve a high rate, stable electrocatalyst for LOBs. The octahedron predominant spinel provides a stable polycrystal structure and optimized electronic structure, which dominates the discharge/charge products evolution with multiformation kinetics of crystal Li2O2 and Li2?xO2 at low and high rate conditions and energetically favors the mass transport between the electrode/electrolyte interface. Simultaneously, the porous NiFeO framework provides adequate spaces for Li2O2 accommodation and complex channels for sufficient electrolyte, oxygen, and ion transportation, which dramatically alter the cathode catalysis for an unprecedented performance. As a consequence, a large specific capacity of 23413 mAh g?1 and an excellent cyclability of 193 cycles at a high current of 1000 mA g?1, and 300 cycles at a current of 500 mA g?1, are achieved. The present work provides intrinsic insights into designing high‐performance metal oxide electrocatalysts for Li–O2 batteries with fine‐tuned electronic and frame structure.  相似文献   

12.
Li‐ion hybrid supercapacitors (Li‐HSCs) hold great promise in future electrical energy storage due to their relatively high power and energy density. However, a major challenge lies in the slow kinetics of Li‐ion intercalation/extraction within metal‐oxide electrodes. Here, it is shown that ultrafast charge storage is realized by confining anatase TiO2 nanoparticles in carbon nanopores to enable a high‐rate anode for Li‐HSCs. The porous carbon with interconnected pore walls and open channels not only works as a conductive host to protect TiO2 from structural degradation but also provides fast pathways for ion/electron transport. As a result, the assembled cells exhibit remarkable rate capabilities with a specific capacity of ≈140 mAh g?1 at a slow charge and ≈60 mAh g?1 at a 3.5 s fast charge. While the charge/discharge process can be completed as fast as that of state‐of‐the‐art electrical double‐layer capacitors (EDLCs), the produced nanocomposites show three to seven times higher volumetric capacitance than activated carbons used in commercial EDLCs with acetonitrile‐based electrolytes. Equally important for some applications in cold climates or the space, the Li‐HSCs can operate at subzero temperatures as low as ?40 °C, which is likely only limited by thermal properties of the acetonitrile (melting point of ?45 °C).  相似文献   

13.
A series of F‐substituted Na2/3Ni1/3Mn2/3O2?xFx (x = 0, 0.03, 0.05, 0.07) cathode materials have been synthesized and characterized by solid‐state 19F and 23Na NMR, X‐ray photoelectron spectroscopy, and neutron diffraction. The underlying charge compensation mechanism is systematically unraveled by X‐ray absorption spectroscopy and electron energy loss spectroscopy (EELS) techniques, revealing partial reduction from Mn4+ to Mn3+ upon F‐substitution. It is revealed that not only Ni but also Mn participates in the redox reaction process, which is confirmed for the first time by EELS techniques, contributing to an increase in discharge specific capacity. The detailed structural transformations are also revealed by operando X‐ray diffraction experiments during the intercalation and deintercalation process of Na+, demonstrating that the biphasic reaction is obviously suppressed in the low voltage region via F‐substitution. Hence, the optimized sample with 0.05 mol f.u.?1 fluorine substitution delivers an ultrahigh specific capacity of 61 mAh g?1 at 10 C after 2000 cycles at 30 °C, an extraordinary cycling stability with a capacity retention of 75.6% after 2000 cycles at 10 C and 55 °C, an outstanding full battery performance with 89.5% capacity retention after 300 cycles at 1 C. This research provides a crucial understanding of the influence of F‐substitution on the crystal structure of the P2‐type materials and opens a new avenue for sodium‐ion batteries.  相似文献   

14.
Molybdenum disulfide (MoS2), which possesses a layered structure and exhibits a high theoretical capacity, is currently under intensive research as an anode candidate for next generation of Li‐ion batteries. However, unmodified MoS2 suffers from a poor cycling stability and an inferior rate capability upon charge/discharge processes. Herein, a unique nanocomposite comprising MoS2 nanothorns epitaxially grown on the backbone of carbon nanotubes (CNTs) and coated by a layer of amorphous carbon is synthesized via a simple method. The epitaxial growth of MoS2 on CNTs results in a strong chemical coupling between active nanothorns and carbon substrate via C? S bond, providing a high stability as well as a high‐efficiency electron‐conduction/ion‐transportation system on cycling. The outer carbon layer can well‐accommodate the structural strain in the electrode upon lithium‐ion insertion/extraction. When employed as an anode for lithium storage, the prepared material exhibits remarkable electrochemical properties with a high specific capacity of 982 mA h g?1 at 0.1 A g?1, as well as excellent long‐cycling stability (905 mA h g?1 at 1 A g?1 after 500 cycles) and superior rate capability, confirming its potential application in high‐performance Li‐ion batteries.  相似文献   

15.
Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g?1 after 200 cycles at 0.5 C and 639 mAh g?1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm?2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm?2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts.  相似文献   

16.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   

17.
Silicon exhibits the largest known capacity for Li insertion in anodes of Li‐ion batteries. However, because of large volume expansion/phase changes upon alloying, Si becomes powder‐like after a few charge‐discharge cycles. Various approaches have been explored in the past to circumvent this problem, including the use of nanomaterials, particularly Si nanowires. However, even though nanowires resist cracking very well, anodes based on Si nanowires still see their original capacity fade away upon cycling, because of wire detachment from the substrate, due to the stress generated at their roots upon alloying with Li. Here, we present a silicon nanowire growth strategy yielding highly interconnected specimens, which prevents them from being individually detached from the substrate. We report a ~100% charge retention after 40 cycles at C/2 rate, without charging voltage limitation. We also show that our anodes can be cycled at 8C rates without damage and we grow nanowires with a density of 1.2 mg/cm2, yielding anodes delivering a 4.2 mAh/cm2 charge density. Finally, we point out that a better understanding of the interactions of silicon with electrolytes is needed if the field is to progress in the future.  相似文献   

18.
Continuous efforts have been made to attain high performance Li‐S batteries by preventing loss of soluble polysulfides, whereas issues related to insoluble discharge products, Li2S2 and Li2S, have been underestimated. A facile and mild method, diazotization, that enables uniform functionalization on the surface of ordered mesoporous carbon (CMK‐3) with aniline functional groups while not deteriorating the original CMK‐3 microstructure is demonstrated. The aniline groups possess favorable interactions with insoluble discharge products. Thus, they homogeneously distribute the insoluble discharge products during cycling. The proposed materials exhibit outstanding electrochemical properties with regard to stability (920 mAh g?1 at 0.2 C after 100 cycles) and rate capability (814 mAh g?1 at 1 C) when evaluated as a cathode material for Li‐S batteries.  相似文献   

19.
3D batteries continue to be of widespread interest for flexible energy storage where the 3D nanostructured cathode is the key component to achieve both high energy and power densities. While current work on flexible cathodes tends to emphasize the use of flexible scaffolds such as graphene and/or carbon nanotubes, this approach is often limited by poor electrical contact and structural stability. This communication presents a novel synthetic approach to form 3D array cathode for the first time, the single‐crystalline Na3(VO)2(PO4)2F (NVOPF) by using VO2 array as a seed layer. The NVOPF cathode exhibits both high‐rate capability (charge/discharge in 60 s) and long‐term durability (10,000 cycles at 50 C) for Na ion storage. Utilizing in situ X‐ray diffraction and first principles calculations, the high‐rate properties are correlated with the small volume change, 2D fast ion transport, and the array morphology. A novel all‐array flexible Na+ hybrid energy storage device based on pairing the intercalation‐type NVOPF array cathode with a cogenetic pseudocapacitive VO2 nanosheet array anode is demonstrated.  相似文献   

20.
The eco‐friendly and low‐cost Co‐free Li1.2Mn0.585Ni0.185Fe0.03O2 is investigated as a positive material for Li‐ion batteries. The electrochemical performance of the 3 at% Fe‐doped material exhibits an optimal performance with a capacity and voltage retention of 70 and 95%, respectively, after 200 cycles at 1C. The effect of iron doping on the electrochemical properties of lithium‐rich layered materials is investigated by means of in situ X‐ray diffraction spectroscopy and galvanostatic intermittent titration technique during the first charge–discharge cycle while high‐resolution transmission electron microscopy is used to follow the structural and chemical change of the electrode material upon long‐term cycling. By means of these characterizations it is concluded that iron doping is a suitable approach for replacing cobalt while mitigating the voltage and capacity degradation of lithium‐rich layered materials. Finally, complete lithium‐ion cells employing Li1.2Mn0.585Ni0.185Fe0.03O2 and graphite show a specific energy of 361 Wh kg?1 at 0.1C rate and very stable performance upon cycling, retaining more than 80% of their initial capacity after 200 cycles at 1C rate. These results highlight the bright prospects of this material to meet the high energy density requirements for electric vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号