首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By employing in situ reduction of metal precursor and metal‐assisted carbon etching process, this study achieves a series of ultrafine transition metal‐based nanoparticles (Ni–Fe, Ni–Mo) embedded in N‐doped carbon, which are found efficient catalysts for electrolytic water splitting. The as‐prepared hybrid materials demonstrate outstanding catalytic activities as non‐noble metal electrodes rendered by the synergistic effect of bimetal elements and N‐dopants, the improved electrical conductivity, and hydrophilism. Ni/Mo2C@N‐doped porous carbon (NiMo‐polyvinylpyrrolidone (PVP)) and NiFe@N‐doped carbon (NiFe‐PVP) produce low overpotentials of 130 and 297 mV at a current density of 10 mA cm?2 as catalysts for hydrogen evolution reaction and oxygen evolution reaction, respectively. In addition, these binder‐free electrodes show long‐term stability. Overall water splitting is also demonstrated based on the couple of NiMo‐PVP||NiFe‐PVP catalyzer. This represents a simple and effective synthesis method toward a new type of nanometal–carbon hybrid electrodes.  相似文献   

2.
In this work, a hierarchically porous and ultrathick “breathable” wood‐based cathode for high‐performance Li‐O2 batteries is developed. The 3D carbon matrix obtained from the carbonized and activated wood (denoted as CA‐wood) serves as a superconductive current collector and an ideal porous host for accommodating catalysts. The ruthenium (Ru) nanoparticles are uniformly anchored on the porous wall of the aligned microchannels (denoted as CA‐wood/Ru). The aligned open microchannels inside the carbon matrix contribute to unimpeded oxygen gas diffusion. Moreover, the hierarchical pores on the microchannel walls can be facilely impregnated by electrolyte, forming a continuous supply of electrolyte. As a result, numerous ideal triphase active sites are formed where electrolyte, oxygen, and catalyst accumulate on the porous walls of microchannels. Benefiting from the numerous well‐balanced triple‐phase active sites, the assembled Li‐O2 battery with the CA‐wood/Ru cathode (thickness: ≈700 µm) shows a high specific area capacity of 8.58 mA h cm?2 at 0.1 mA cm?2. Moreover, the areal capacity can be further increased to 56.0 mA h cm?2 by using an ultrathick CA‐wood/Ru cathode with a thickness of ≈3.4 mm. The facile ultrathick wood‐based cathodes can be applied to other cathodes to achieve a super high areal capacity without sacrificing the electrochemical performance.  相似文献   

3.
Efficient and selective dehydrogenation of hydrazine borane (HB), a novel hydrogen storage material with very high hydrogen content (HB, 15.4 wt%), is a key challenge for a fuel‐cell‐based hydrogen economy. However, even using the noble metal catalysts for HB decomposition, the activities are still far from satisfying, to say nothing of non‐noble‐metal‐containing catalysts. In response, as a proof‐of‐concept experiment, herein, noble‐metal‐free NiFe–CeOx nanoparticles are successfully immobilized on an MIL‐101 support without surfactant by a simple liquid impregnation method. Unexpectedly, the resultant Ni0.5Fe0.5–CeOx/MIL‐101 catalyst shows good performance, including 100% H2 selectivity, 100% conversion, and record catalytic activity (351.3 h?1) for hydrogen generation at mild temperature, which is even better than most of the noble metal heterogeneous catalysts and might be attributed to the good dispersion and uniform particle size of the Ni0.5Fe0.5–CeOx nanoparticles due to steric restrictions effect of the MIL‐101 support. Additionally, extending MIL‐101 to some other important kinds of metal–organic framework (MOF) structures, the resultant NiFe–CeOx/MOF catalysts all show good catalytic activity toward HB decomposition, showing the universality of the MOF supported NiFe–CeOx catalysts.  相似文献   

4.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

5.
Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm?2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic.  相似文献   

6.
There is an intensive search for heterogeneous single atom catalysts (SACs) of high activity, efficiency, durability, and selectivity for a wide variety of electrocatalytic conversion and chemical reactions, such as the hydrogen evolution reaction (HER), oxygen evolution/reduction reaction (OER and ORR), CO2 reduction reaction (CO2 RR), and nitrogen reduction reaction (NRR). With the downsizing from nanoparticles and clusters to single atoms, there are steady changes in the bond and coordination environment for each and every atom involved. Indeed, the single atoms in these electrocatalysts are not “singles”; they are “married” to the supporting surfaces, and their performance is controlled by the bonding and coordination with the substrate surfaces. Herein, an overview is presented on the brief history leading to the rapid development of SACs and their current status, by focusing on their synthesis, control of composition, strategies to realize single atoms with the desired bonds and coordination, and targeted performance in selected reactions. Their applications in the selected spectrum of energy conversion and chemical reactions are discussed, in relation to their structures at varying length scales down to the atomic level. A particular emphasis is placed on on‐going research activities, together with the future perspectives and particular challenges for SACs.  相似文献   

7.
Searching for cost‐effective and high‐performance electrocatalysts for hydrogen production is of paramount importance. Herein, nickel‐copper (NiCu) alloy nanoparticles are encapsulated into graphitic shells via an ambient‐pressure chemical vapor deposition process. The resulting carbon‐encapsulated NiCu (denoted as NiCu@C) composite possesses a well‐defined core–shell structure with tunable thicknesses of the shells and is examined as electrocatalysts for the hydrogen evolution reaction (HER) in acidic, neutral, and alkaline solutions. Electrochemical measurements indicate that the activity of the NiCu@C highly depends on the thickness of the shell. Single‐layered graphene encapsulated NiCu nanoparticles show remarkable HER activity and durability. To obtain a current density of 10 mA cm?2, overpotentials of 48, 164, and 74 mV are needed in electrolyte solutions with pH = 0, 7, and 14, respectively. Such low overpotentials render the composite as one of the most active nonprecious electrocatalysts. Accelerated durability tests demonstrate that the NiCu@C catalysts exhibit excellent stability. Density function theory calculations are conducted to investigate the electronic structures of the NiCu@C. It is found that the representative Ni43Cu12@C240 model shows an ideal adsorption energy of hydrogen (?0.03 eV), manifesting its high HER activity.  相似文献   

8.
Developing substitutes of noble metal catalysts toward oxygen reduction reaction (ORR) at the cathode is of vital importance for promoting low‐temperature polymer electrolyte membrane fuel cells. Transition metal species have been one of the hot areas of interest due to their low cost, high activity, and long‐term stability. The design of porous carbon nanostructures decorated with transition metal species plays a vital role in enhancing ORR catalytic performance. Here, the recent breakthroughs in porous carbon nanostructures decorated with transition metal species (including nanoparticles and atomically dispersed supported metal) are discussed. The porous nanostructures can provide large surface area as well as abundant pore channels, leading to sufficient exposure of active sites and efficient mass transfer. These nanostructures can be synthesized by several approaches, including the templated method, the self‐templated method, the impregnation process, and so on. Furthermore, the ORR performance and the exploration of active sites are also discussed for further enhancement of the ORR catalysts. Finally, the challenges and prospects are discussed, which would push forward the development of ORR catalysts in the near future.  相似文献   

9.
Hard carbons (HCs) are promising anodes of sodium‐ion batteries (SIBs) due to their high capacity, abundance, and low cost. However, the sodium storage mechanism of HCs remains unclear with no consensus in the literature. Here, based on the correlation between the microstructure and Na storage behavior of HCs synthesized over a wide pyrolysis temperature range of 600–2500 °C, an extended “adsorption–insertion” sodium storage mechanism is proposed. The microstructure of HCs can be divided into three types with different sodium storage mechanisms. The highly disordered carbon, with d002 (above 0.40 nm) large enough for sodium ions to freely transfer in, has a “pseudo‐adsorption” sodium storage mechanism, contributing to sloping capacity above 0.1 V, together with other conventional “defects” (pores, edges, heteroatoms, etc.). The pseudo‐graphitic carbon (d‐spacing in 0.36–0.40 nm) contributes to the low‐potential (<0.1 V) plateau capacity through “interlayer insertion” mechanism, with a theoretical capacity of 279 mAh g?1 for NaC8 formation. The graphite‐like carbon with d002 below 0.36 nm is inaccessible for sodium ion insertion. The extended “adsorption–insertion” model can accurately explain the dependence of the sodium storage behavior of HCs with different microstructures on the pyrolysis temperature and provides new insight into the design of HC anodes for SIBs.  相似文献   

10.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   

11.

Questions

Predicting which newly arrived species will establish and become invasive is a problem that has long vexed researchers. In a study of cold temperate oak forest stands, we examined two contrasting hypotheses regarding plant functional traits to explain the success of certain non‐native species. Under the “join the locals” hypothesis, successful invaders are expected to share traits with resident species because they employ successful growth strategies under light‐limited understorey conditions. Instead, under the “try harder” hypothesis, successful invaders are expected to have traits different from native species in order to take advantage of unused niche space.

Location

Minnesota, USA.

Methods

We examined these two theories using 109 native and 11 non‐native plants in 68 oak forest stands. We focused on traits related to plant establishment and growth, including specific leaf area (SLA), leaf carbon‐to‐nitrogen ratio (C:N), wood density, plant maximum height, mycorrhizal type, seed mass and growth form. We compared traits of native and non‐native species using ordinations in multidimensional trait space and compared community‐weighted mean (CWM) trait values across sites.

Results

We found few differences between trait spaces occupied by native and non‐native species. Non‐native species occupied smaller areas of trait space than natives, yet were within that of the native species, indicating similar growth strategies. We observed a higher proportion of non‐native species in sites with higher native woody species CWM SLA and lower CWM C:N. Higher woody CWM SLA was observed in sites with higher soil pH, while lower CWM C:N was found in sites with higher light levels.

Conclusions

Non‐native plants in this system have functional traits similar to natives and are therefore “joining the locals.” However, non‐native plants may possess traits toward the acquisitive end of the native plant trait range, as evidenced by higher non‐native plant abundance in high‐resource environments.
  相似文献   

12.
Transition‐metal phosphides (TMPs)‐based electrode materials with high capacity have attracted considerable interest as a promising anode material for lithium?ion batteries (LIBs). Herein, a hierarchical cable‐like structure composed of CoP@C core?shell nanoparticles (NPs) encapsulated in one‐dimensional (1D) porous carbon framework intertwined with N‐doped carbon nanotubes (CoP@C?PCF/NCNTs) is synthesized by a self‐templating, self‐catalytic, and subsequent vapor‐phase phosphorization strategy. The unique nanoarchitecture regime provides multiple advantages. The 1D carbon framework allows for quick ion and electron access, maintaining the integrity and accommodating the volume change of the structure during repeated discharging/charging. The internal carbon shell can prevent the direct aggregation of CoP NPs on cycling. The external NCNTs on the surface supply a staggered conductive network to promote electrolyte penetration and charge transportation. Impressively, the as‐fabricated hybrid nanocables deliver a reversible capacity of 712 mAh g?1 at 0.5 A g?1 for over 700 cycles with excellent rate capability as an anode material for LIBs. The significantly improved lithium storage properties of CoP@C?PCF/NCNTs reveal the importance of reasonable design and engineering of novel hierarchical structures with higher complexity.  相似文献   

13.
14.
“Bottom‐up” influences, that is, masting, plus population density and climate, commonly influence woodland rodent demography. However, “top‐down” influences (predation) also intervene. Here, we assess the impacts of masting, climate, and density on rodent populations placed in the context of what is known about “top‐down” influences. To explain between‐year variations in bank vole Myodes glareolus and wood mouse Apodemus sylvaticus population demography, we applied a state‐space model to 33 years of catch‐mark‐release live‐trapping, winter temperature, and precise mast‐collection data. Experimental mast additions aided interpretation. Rodent numbers in European ash Fraxinus excelsior woodland were estimated (May/June, November/December). December–March mean minimum daily temperature represented winter severity. Total marked adult mice/voles (and juveniles in May/June) provided density indices validated against a model‐generated population estimate; this allowed estimation of the structure of a time‐series model and the demographic impacts of the climatic/biological variables. During two winters of insignificant fruit‐fall, 6.79 g/m2 sterilized ash seed (as fruit) was distributed over an equivalent woodland similarly live‐trapped. September–March fruit‐fall strongly increased bank vole spring reproductive rate and winter and summer population growth rates; colder winters weakly reduced winter population growth. September–March fruit‐fall and warmer winters marginally increased wood mouse spring reproductive rate and September–December fruit‐fall weakly elevated summer population growth. Density dependence significantly reduced both species' population growth. Fruit‐fall impacts on demography still appeared after a year. Experimental ash fruit addition confirmed its positive influence on bank vole winter population growth with probable moderation by colder temperatures. The models show the strong impact of masting as a “bottom‐up” influence on rodent demography, emphasizing independent masting and weather influences; delayed effects of masting; and the importance of density dependence and its interaction with masting. We conclude that these rodents show strong “bottom‐up” and density‐dependent influences on demography moderated by winter temperature. “Top‐down” influences appear weak and need further investigation.  相似文献   

15.
Developing low‐cost, highly efficient, and robust earth‐abundant electrocatalysts for hydrogen evolution reaction (HER) is critical for the scalable production of clean and sustainable hydrogen fuel through electrochemical water splitting. This study presents a facile approach for the synthesis of nanostructured pyrite‐phase transition metal dichalcogenides as highly active, earth‐abundant catalysts in electrochemical hydrogen production. Iron disulfide (FeS2) nanoparticles are in situ loaded and stabilized on reduced graphene oxide (RGO) through a current‐induced high‐temperature rapid thermal shock (≈12 ms) of crushed iron pyrite powder. FeS2 nanoparticles embedded in between RGO exhibit remarkably improved electrocatalytic performance for HER, achieving 10 mA cm?2 current at an overpotential as low as 139 mV versus a reversible hydrogen electrode with outstanding long‐term stability under acidic conditions. The presented strategy for the design and synthesis of highly active earth‐abundant nanomaterial catalysts paves the way for low‐cost and large‐scale electrochemical energy applications.  相似文献   

16.
We demonstrate that “nanofactory”‐loaded biopolymer capsules placed in the midst of a bacterial population can direct bacterial communication. Quorum sensing (QS) is a process by which bacteria communicate through small‐molecules, such as autoinducer‐2 (AI‐2), leading to collective behaviors such as virulence and biofilm formation. In our approach, a “nanofactory” construct is created, which comprises an antibody complexed with a fusion protein that produces AI‐2. These nanofactories are entrapped within capsules formed by electrostatic complexation of cationic (chitosan) and anionic (sodium alginate) biopolymers. The chitosan capsule shell is crosslinked by tripolyphosphate (TPP) to confer structural integrity. The capsule shell is impermeable to the encapsulated nanofactories, but freely permeable to small molecules. In turn, the capsules are able to take in substrates from the external medium via diffusion, and convert these via the nanofactories into AI‐2, which then diffuses out. The exported AI‐2 is shown to stimulate QS responses in vicinal Escherichia coli. Directing bacterial population behavior has potential applications in next‐generation antimicrobial therapy and pathogen detection. We also envision such capsules to be akin to artificial “cells” that can participate in native biological signaling and communicate in real‐time with the human microbiome. Through such interaction capabilities, these “cells” may sense the health of the microbiome, and direct its function in a desired, host‐friendly manner. Biotechnol. Bioeng. 2013; 110: 552–562. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The development of efficient hydrogen evolution reaction electrocatalysts is critical to the realization of clean hydrogen fuel production, while the sluggish kinetics of the Volmer‐step substantially restricts the catalyst performances in alkali electrolyzers, even for noble metal catalysts such as Pt. Here, a Pt‐decorated Ni3N nanosheet electrocatalyst is developed to achieve a top performance of hydrogen evolution in alkaline conditions. Possessing a high metallic conductivity and an atomic‐thin semiconducting hydroxide surface, the Ni3N nanosheets serve as not only an efficient electron pathway without the hindrance of Schottky barriers, but also provide abundant active sites for water dissociation and generation of hydrogen intermediates, which are further adsorbed on the Pt surface to recombine to H2. The Pt‐decorated Ni3N nanosheet catalyst exhibits a hydrogen evolution current density of 200 mA cm?2 at an overpotential of 160 mV versus reversible hydrogen electrode, a Tafel slope of ≈36.5 mV dec?1, and excellent stability of 82.5% current retention after 24 h of operation. Moreover, a hybrid cell consisting of a Pt‐decorated Ni3N nanosheet cathode and a Li‐metal anode is assembled to achieve simultaneous hydrogen evolution and electricity generation, exhibiting >60 h long‐term hydrogen evolution reaction stability and an output voltage ranging from 1.3 to 2.2 V.  相似文献   

18.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

19.
Novel insights into the “superglue” of velvet worms The biological “superglue” of velvet worms provides inspiration towards circular processing of advanced polymers. In nature, velvet worms employ a fluid, protein‐rich secretion for hunting and defense, which forms rapidly into stiff fibers. The fluid‐to‐fiber transition occurs outside the body without regulations, indicating that the “instructions” for assembly are programmed into the protein building blocks. Electrostatic interactions between oppositely charged protein domains and free ions drive protein folding, self‐organization (coacervation) and stabilization of the building blocks into nanoscale droplets. Yet, nanodroplets can be instantly transformed via simple mechanical stimulus as proteins partially unfold, merge together and form a strong network, which solidifies into a fiber. The mechanism is based on basic physico‐chemical principles. Thus, by extracting these principles, new methods of synthesizing sustainable polymer‐based materials can be developed.  相似文献   

20.
The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double‐layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass‐derived N, P‐codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom‐enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom‐enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as‐prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as‐prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long‐term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号