首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing demand for replacing conventional fossil fuels with clean energy or economical and sustainable energy storage drives better battery research today. Sodium‐ion batteries (SIBs) are considered as a promising alternative for grid‐scale storage applications due to their similar “rocking‐chair” sodium storage mechanism to lithium‐ion batteries, the natural abundance, and the low cost of Na resources. Searching for appropriate electrode materials with acceptable electrochemical performance is the key point for development of SIBs. Layered transition metal oxides represent one of the most fascinating electrode materials owing to their superior specific capacity, environmental benignity, and facile synthesis. However, three major challenges (irreversible phase transition, storage instability, and insufficient battery performance) are known for cathodes in SIBs. Herein, a comprehensive review on the latest advances and progresses in the exploration of layered oxides for SIBs is presented, and a detailed and deep understanding of the relationship of phase transition, air stability, and electrochemical performance in layered oxide cathodes is provided in terms of refining the structure–function–property relationship to design improved battery materials. Layered oxides will be a competitive and attractive choice as cathodes for SIBs in next‐generation energy storage devices.  相似文献   

2.
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene‐based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene‐based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high‐performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)‐ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)‐ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage‐related applications are discussed.  相似文献   

3.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

4.
Rechargeable aprotic Li–O2 batteries are one of the most promising next‐generation battery technologies that can deliver extremely high energy density. In the past decades, this technology has attracted worldwide attention, and considerable progress has been achieved. However, numerous critical scientific challenges remain to be solved for practical applications. A specific discussion of recent progress from the perspective of the stable aprotic Li–O2 system with high energy efficiency is presented. The discussion is highlighted on the reaction mechanisms on air cathode, stability of cell components in semi‐open surroundings, and improvement of battery performance by catalyst design. Challenges and perspectives are also presented. This study provides an intensive understanding of aprotic Li–O2 batteries and offers an important guideline for developing reversible and high‐efficiency Li–O2 batteries.  相似文献   

5.
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries.  相似文献   

6.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

7.
Mixed transition‐metal oxides (MTMOs), including stannates, ferrites, cobaltates, and nickelates, have attracted increased attention in the application of high performance lithium‐ion batteries. Compared with traditional metal oxides, MTMOs exhibit enormous potential as electrode materials in lithium‐ion batteries originating from higher reversible capacity, better structural stability, and high electronic conductivity. Recent advancements in the rational design of novel MTMO micro/nanostructures for lithium‐ion battery anodes are summarized and their energy storage mechanism is compared to transition‐metal oxide anodes. In particular, the significant effects of the MTMO morphology, micro/nanostructure, and crystallinity on battery performance are highlighted. Furthermore, the future trends and prospects, as well as potential problems, are presented to further develop advanced MTMO anodes for more promising and large‐scale commercial applications of lithium‐ion batteries.  相似文献   

8.
Mixed metal sulfides (MMSs) have attracted increased attention as promising electrode materials for electrochemical energy storage and conversion systems including lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), hybrid supercapacitors (HSCs), metal–air batteries (MABs), and water splitting. Compared with monometal sulfides, MMSs exhibit greatly enhanced electrochemical performance, which is largely originated from their higher electronic conductivity and richer redox reactions. In this review, recent progresses in the rational design and synthesis of diverse MMS‐based micro/nanostructures with controlled morphologies, sizes, and compositions for LIBs, SIBs, HSCs, MABs, and water splitting are summarized. In particular, nanostructuring, synthesis of nanocomposites with carbonaceous materials and fabrication of 3D MMS‐based electrodes are demonstrated to be three effective approaches for improving the electrochemical performance of MMS‐based electrode materials. Furthermore, some potential challenges as well as prospects are discussed to further advance the development of MMS‐based electrode materials for next‐generation electrochemical energy storage and conversion systems.  相似文献   

9.
Electrochemical metal‐ion intercalation systems are acknowledged to be a critical energy storage technology. The kinetics of the intercalation processes in transition‐metal based oxides determine the practical characteristics of metal‐ion batteries, such as the energy density, power, and cyclability. With the emergence of post lithium‐ion batteries, such as sodium‐ion and potassium‐ion batteries, which function predominately in nonaqueous electrolytes of special formulation and exhibit quite varied material stability with regard to their surface chemistries and reactivity with electrolytes, the practical routes for the optimization of metal‐ion battery performance become essential. Electrochemical methods offer a variety of means to quantitatively study the diffusional, charge transfer, and phase transformation rates in complex systems, which are, however, rather rarely fully adopted by the metal‐ion battery community, which slows down the progress in rationalizing the rate‐controlling factors in complex intercalation systems. Herein, several practical approaches for diagnosing the origin of the rate limitations in intercalation materials based on phenomenological models are summarized, focusing on the specifics of charge transfer, diffusion, and nucleation phenomena in redox‐active solid electrodes. It is demonstrated that information regarding rate‐determining factors can be deduced from relatively simple analysis of experimental methods including cyclic voltammetry, chronoamperometry, and impedance spectroscopy.  相似文献   

10.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

11.
Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte‐based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid‐state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxides‐based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. This review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   

12.
In recent years, the electrochemical power sources community has launched massive research programs, conferences, and workshops on the “post Li battery era.” However, in this report it is shown that the quest for post Li‐ion and Li battery technologies is incorrect in its essence. This is the outcome of a three day discussion on the future technologies that could provide an answer to a question that many ask these days: Which are the technologies that can be regarded as alternative to Li‐ion batteries? The answer to this question is a rather surprising one: Li‐ion battery technology will be here for many years to come, and therefore the use of “post Li‐ion” battery technologies would be misleading. However, there are applications with needs for which Li‐ion batteries will not be able to provide complete technological solutions, as well as lower cost and sustainability. In these specific cases, other battery technologies will play a key role. Here, the term “side‐by‐side technologies” is coined alongside a discussion of its meaning. The progress report does not cover the topic of Li‐metal battery technologies, but covers the technologies of sodium‐ion, multivalent, metal–air, and flow batteries.  相似文献   

13.
Despite the wide application of lithium‐ion batteries in portable electronic devices and electric vehicles, the demand for new battery systems with the merits of high voltage, environmental friendliness, safety, and cost efficiency is still quite urgent. This perspective focuses on dual‐ion batteries (DIBs), in which, both the cations and anions are involved in the battery reaction. An anion's intercalation/deintercalation process on the cathode side allows the DIBs to operate at high voltages, which is favorable for enhanced energy density. However, electrolytes with a wide electrochemical window and suitable anion‐intercalation materials with highly reversible capacities should be developed. The progress of research into stable organic electrolytes, ionic liquids, and their effects on the electrochemical performances of DIBs are first discussed. Thereafter, the anion‐host materials including graphitic materials, organic materials, and their working mechanisms are discussed in detail. In addition, recently emerging DIB systems with high‐capacity anodes, or sodium‐, potassium‐ion involved battery reactions are also reviewed. The authors' recent work, demonstrating a generalized DIB construction using metal foil as both current collector and alloying anode material, which is successfully extended into lithium‐, sodium‐, and potassium‐based DIBs, is also discussed.  相似文献   

14.
Lithium–sulfur (Li–S) batteries continue to be considered promising post‐lithium‐ion batteries owing to their high theoretical energy density. In pursuit of a Li–S cell with long‐term cyclability, most studies thus far have relied on using ether‐based electrolytes. However, their limited ability to dissolve polysulfides requires a high electrolyte‐to‐sulfur ratio, which impairs the achievable specific energy. Recently, the battery community found high donor electrolytes to be a potential solution to this shortcoming because their high solubility toward polysulfides enables a cell to operate under lean electrolyte conditions. Despite the increasing number of promising outcomes with high donor electrolytes, a critical hurdle related to stability of the lithium‐metal counter electrode needs to be overcome. This review provides an overview of recent efforts pertaining to high donor electrolytes in Li–S batteries and is intended to raise interest from within the community. Furthermore, based on analogous efforts in the lithium‐air battery field, strategies for protecting the lithium metal electrode are proposed. It is predicted that high donor electrolytes will be elevated to a higher status in the field of Li–S batteries, with the hope that either existing or upcoming strategies will, to a fair extent, mitigate the degradation of the lithium–metal interface.  相似文献   

15.
Na‐ion batteries are promising for large‐scale energy storage due to the low cost and earth abundance of the sodium resource. Despite tremendous efforts being made to improve the battery performance, some fundamental mechanism issues still are not sufficiently understood. One such issue in the most popularized layered structure materials is the potential cation migration into sodium layers, which would highly affect the energy efficiency thus hindering its widespread use in the future. Here a systematic study of the cation migration in layered structure materials is presented and its relationship with voltage hysteresis is disclosed. Using the high‐angle annular dark field‐scanning transmission electron microscopy and in operando X‐ray diffraction as implements, for the first time, the reversible migration of the transition metal between transition metal layers and sodium layers is captured. The research inspires a novel insight into the cation migration related layered materials, which should be considered for future battery design toward conventional use.  相似文献   

16.
The nickel matrix has a significant impact on the structure and performance of a nickel–metal hydride (NiMH) battery. However, few studies have focused on the nickel matrix thus far due to the difficulty of fabricating controllable porous nickel materials. In addition, conventional nickel matrices show poor flexibility, making it difficult to fabricate flexible NiMH batteries. To achieve a high performance flexible NiMH battery, the fabrication of a thin, free‐standing, and flexible nickel matrix with an optimized pore structure is a key prerequisite. Here, a novel flexible porous nickel matrix with a controllable pore size, density, and distribution of pore position is developed by nickel electrodeposition on templates that are produced by silkscreen printing different insulating ink microarrays on stainless steel sheets. Benefitting from the excellent structure of the porous nickel matrix, flexible NiMH batteries are fabricated, which show excellent flexibility and very high energy densities of 151.8 W h kg?1 and 508.5 W h L?1 as well as high energy efficiencies of 87.9–98.5%. These batteries outperform conventional NiMH batteries and many other commercial batteries, holding great promise for their future practical application. The present strategy provides a new route to promote the development of nickel‐based alkaline rechargeable batteries.  相似文献   

17.
Sodium‐metal chloride batteries, ZEBRA, are considered one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium–nickel chloride (Na–NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). Here, a novel intermediate‐temperature sodium–iron chloride (Na–FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur‐based additives in Fe cathode enables Na–FeCl2 batteries can be assembled in the discharged state and operated at intermediate temperature (<200 °C). The results presented demonstrate that intermediate‐temperature Na–FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na–NiCl2 chemistry.  相似文献   

18.
The success of Li–air/O2 batteries has brought extensive attention to the development of various promising non‐Li metal–O2 batteries, such as Zn–O2, Al–O2, Mg–O2 batteries, etc., which have exhibited unique advantages, such as low production cost, high energy density, and much enhanced safety. The versatile non‐Li metal–O2 batteries provide a better opportunity for meeting the practical requirements for sustainable energy supplies in various applications. A high‐performance cathode in non‐Li metal–O2 batteries that can effectively trigger both oxygen reduction and evolution reactions and thus boost the overall battery performance is of great research interest. In this article, a comprehensive review on the development of Li‐free metal–O2 batteries and particularly focusing on the oxygen catalytic cathodes for both primary and secondary non‐Li metal–O2 batteries is carefully performed. The current challenges and potential solutions are also outlined and proposed. Through carefully selecting and rationally designing promising catalytic cathodes, a series of non‐Li metal–oxygen batteries toward practical energy storage applications are highly anticipated.  相似文献   

19.
Safety, nontoxicity, and durability directly determine the applicability of the essential characteristics of the lithium (Li)‐ion battery. Particularly, for the lithium–sulfur battery, due to the low ignition temperature of sulfur, metal lithium as the anode material, and the use of flammable organic electrolytes, addressing security problems is of increased difficulty. In the past few years, two basic electrolyte systems are studied extensively to solve the notorious safety issues. One system is the conventional organic liquid electrolyte, and the other is the inorganic solid‐state or quasi‐solid‐state composite electrolyte. Here, the recent development of engineered liquid electrolytes and design considerations for solid electrolytes in tackling these safety issues are reviewed to ensure the safety of electrolyte systems between sulfur cathode materials and the lithium‐metal anode. Specifically, strategies for designing and modifying liquid electrolytes including introducing gas evolution, flame, aqueous, and dendrite‐free electrolytes are proposed. Moreover, the considerations involving a high‐performance Li+ conductor, air‐stable Li+ conductors, and stable interface performance between the sulfur cathode and the lithium anode for developing all‐solid‐state electrolytes are discussed. In the end, an outlook for future directions to offer reliable electrolyte systems is presented for the development of commercially viable lithium–sulfur batteries.  相似文献   

20.
Redox flow batteries have considerable advantages of system scalability and operation flexibility over other battery technologies, which makes them promising for large‐scale energy storage application. However, they suffer from low energy density and consequently relatively high cost for a nominal energy output. Redox targeting–based flow batteries are employed by incorporating solid energy storage materials in the tank and present energy density far beyond the solubility limit of the electrolytes. The success of this concept relies on paring suitable redox mediators with solid materials for facilitated reaction kinetics and lean electrolyte composition. Here, a redox targeting‐based flow battery system using the NASICON‐type Na3V2(PO4)3 as a capacity booster for both the catholyte and anolyte is reported. With 10‐methylphenothiazine as the cathodic redox mediator and 9‐fluorenone as anodic redox mediator, an all‐organic single molecule redox targeting–based flow battery is developed. The anodic and cathodic capacity are 3 and 17 times higher than the solubility limit of respective electrolyte, with which a full cell can achieve an energy density up to 88 Wh L?1. The reaction mechanism is scrutinized by operando and in‐situ X‐ray and UV–vis absorption spectroscopy. The reaction kinetics are analysed in terms of Butler–Volmer formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号