首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductive 2D metal–organic frameworks (MOFs) have merits beyond traditional MOFs for electrochemical applications, but reports on using MOFs as electrodes for electrochemical microsupercapacitors (MSCs) are practically non‐existent. In this work, a Ni‐catecholate‐based MOF (Ni‐CAT MOF) having good conductivity and exhibiting redox chemistry in the positive and negative voltage windows is developed. A novel process is developed to selectively grow the conductive Ni‐CAT MOF on 3D laser scribed graphene (LSG). The LSG with its superior wettability serves as a functional matrix‐current collector for the hybridization of conductive Ni‐CAT MOF nanocrystals. Impressively, MSCs fabricated using the hybrid LSG/Ni‐CAT MOF show significant improvement compared with MOF‐free LSG electrodes. Specifically, the LSG/Ni‐CAT MOF electrodes can deliver MSCs with a wide operating voltage (1.4 V), high areal capacitance (15.2 mF cm?2), energy density (4.1 µWh cm?2), power density (7 mW cm?2), good rate performance, and decent cycling stability. This work opens up an avenue for developing electrochemical microsupercapacitors using conductive MOF electrodes.  相似文献   

2.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   

3.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

4.
Lithium–sulfur (Li‐S) batteries are a promising next‐generation energy‐storage system, but the polysulfide shuttle and dendritic Li growth seriously hinder their commercial viability. Most of the previous studies have focused on only one of these two issues at a time. To address both the issues simultaneously, presented here is a highly conductive, noncarbon, 3D vanadium nitride (VN) nanowire array as an efficient host for both sulfur cathodes and lithium‐metal anodes. With fast electron and ion transport and high porosity and surface area, VN traps the soluble polysulfides, promotes the redox kinetics of sulfur cathodes, facilitates uniform nucleation/growth of lithium metal, and inhibits lithium dendrite growth at an unprecedented high current density of 10 mA cm?2 over 200 h of repeated plating/stripping. As a result, VN‐Li||VN‐S full cells constructed with VN as both an anode and cathode host with a negative to positive electrode capacity ratio of only ≈2 deliver remarkable electrochemical performance with a high Coulombic efficiency of ≈99.6% over 850 cycles at a high 4 C rate and a high areal capacity of 4.6 mA h cm?2. The strategy presented here offers a viable approach to realize high‐energy‐density, safe Li‐metal‐based batteries.  相似文献   

5.
Metal–organic frameworks (MOFs) with intrinsically porous structures are promising candidates for energy storage, however, their low electrical conductivity limits their electrochemical energy storage applications. Herein, the hybrid architecture of intrinsically conductive Cu‐MOF nanowire arrays on self‐supported polypyrrole (PPy) membrane is reported for integrated flexible supercapacitor (SC) electrodes without any inactive additives, binders, or substrates involved. The conductive Cu‐MOFs nanowire arrays afford high conductivity and a sufficiently active surface area for the accessibility of electrolyte, whereas the PPy membrane provides decent mechanical flexibility, efficient charge transfer skeleton, and extra capacitance. The all‐solid‐state flexible SC using integrated hybrid electrode demonstrates an exceptional areal capacitance of 252.1 mF cm?2, an energy density of 22.4 µWh cm?2, and a power density of 1.1 mW cm?2, accompanied by an excellent cycle capability and mechanical flexibility over a wide range of working temperatures. This work not only presents a robust and flexible electrode for wide temperature range operating SC but also offers valuable concepts with regards to designing MOF‐based hybrid materials for energy storage and conversion systems.  相似文献   

6.
Batteries with high energy and power densities along with long cycle life and acceptable safety at an affordable cost are critical for large‐scale applications such as electric vehicles and smart grids, but is challenging. Lithium–sulfur (Li‐S) batteries are attractive in this regard due to their high energy density and the abundance of sulfur, but several hurdles such as poor cycle life and inferior sulfur utilization need to be overcome for them to be commercially viable. Li–S cells with high capacity and long cycle life with a dual‐confined flexible cathode configuration by encapsulating sulfur in nitrogen‐doped double‐shelled hollow carbon spheres followed by graphene wrapping are presented here. Sulfur/polysulfides are effectively immobilized in the cathode through physical confinement by the hollow spheres with porous shells and graphene wrapping as well as chemical binding between heteronitrogen atoms and polysulfides. This rationally designed free‐standing nanostructured sulfur cathode provides a well‐built 3D carbon conductive network without requiring binders, enabling a high initial discharge capacity of 1360 mA h g?1 at a current rate of C/5, excellent rate capability of 600 mA h g?1 at 2 C rate, and sustainable cycling stability for 200 cycles with nearly 100% Coulombic efficiency, suggesting its great promise for advanced Li–S batteries.  相似文献   

7.
In this work, a hierarchically porous and ultrathick “breathable” wood‐based cathode for high‐performance Li‐O2 batteries is developed. The 3D carbon matrix obtained from the carbonized and activated wood (denoted as CA‐wood) serves as a superconductive current collector and an ideal porous host for accommodating catalysts. The ruthenium (Ru) nanoparticles are uniformly anchored on the porous wall of the aligned microchannels (denoted as CA‐wood/Ru). The aligned open microchannels inside the carbon matrix contribute to unimpeded oxygen gas diffusion. Moreover, the hierarchical pores on the microchannel walls can be facilely impregnated by electrolyte, forming a continuous supply of electrolyte. As a result, numerous ideal triphase active sites are formed where electrolyte, oxygen, and catalyst accumulate on the porous walls of microchannels. Benefiting from the numerous well‐balanced triple‐phase active sites, the assembled Li‐O2 battery with the CA‐wood/Ru cathode (thickness: ≈700 µm) shows a high specific area capacity of 8.58 mA h cm?2 at 0.1 mA cm?2. Moreover, the areal capacity can be further increased to 56.0 mA h cm?2 by using an ultrathick CA‐wood/Ru cathode with a thickness of ≈3.4 mm. The facile ultrathick wood‐based cathodes can be applied to other cathodes to achieve a super high areal capacity without sacrificing the electrochemical performance.  相似文献   

8.
Preparation of hierarchical carbon nanomaterials from metal?organicframeworks (MOFs) offers immense potential in the improvement of energy density, tunability, and stability of functional materials for energy storage and conversion. How interconnected nitrogen (N)‐doped wrinkled carbon foils derived from MOF nanosheets can serve as high‐performance sodium storage materials due to their multiscale porous structure is shown here. The novel N‐doped carbon nanomaterials are synthesized through the pyrolysis of 2D Mn‐based MOFs, which are produced through the assistance of monodentate ligands to enable the planar growth of MOFs. Subsequent acid etching creates hierarchical pores and channels to allow rapid ion transport. The resulting materials achieve high‐rate capability (165 and 150 mA h g?1 at current densities of 8 and 10 A g?1, respectively) and high stability (capacity retention 72.8% after 1000 cycling at 1.0 A g?1), when they are used as anode in sodium‐ion capacitors.  相似文献   

9.
A facile two‐step strategy is developed to design the large‐scale synthesis of hierarchical, unique porous architecture of ternary metal hydroxide nanowires grown on porous 3D Ni foam and subsequent effective sulfurization. The hierarchical Zn–Co–S nanowires (NWs) arrays are directly employed as an electrode for supercapacitors application. The as‐synthesized Zn–Co–S NWs deliver an ultrahigh areal capacity of 0.9 mA h cm?2 (specific capacity of 366.7 mA h g?1) at a current density of 3 mA cm?2, with an exceptional rate capability (≈227.6 mA h g?1 at a very high current density of 40 mA cm?2) and outstanding cycling stability (≈93.2% of capacity retention after 10 000 cycles). Most significantly, the assembled Zn–Co–S NWs//Fe2O3@reduced graphene oxide asymmetric supercapacitors with a wide operating potential window of ≈1.6 V yield an ultrahigh volumetric capacity of ≈1.98 mA h cm?3 at a current density of 3 mA cm?2, excellent energy density of ≈81.6 W h kg?1 at a power density of ≈559.2 W kg?1, and exceptional cycling performance (≈92.1% of capacity retention after 10 000 cycles). This general strategy provides an alternative to design the other ternary metal sulfides, making it facile, free‐standing, binder‐free, and cost‐effective ternary metal sulfide‐based electrodes for large‐scale applications in modern electronics.  相似文献   

10.
The lithium–sulfur battery is a promising next‐generation rechargeable battery system which promises to be less expensive and potentially fivefold more energy dense than current Li‐ion technologies. This can only be achieved by improving the sulfur utilization in thick, high areal loading cathodes while minimizing capacity fading to realize high practical energy densities and long cycle‐life. This study reports a simple method to fabricate a high capacity, high loading cathode with one of the highest cycle‐stabilities reported. It is demonstrated that sulfur sols formed by crashing dissolved elemental sulfur into water are trapped between graphene oxide sheets when flocculated with polyethyleneimine. Low temperature, hydrothermal treatment produces a conductive, partially covalent composite exhibiting outstanding cycle‐stability. Using this method, sulfur can be uniformly distributed at fractions as high as 75.7 wt%. Electrodes with high areal sulfur loadings (up to ≈5.4 mg cm?2), prepared using these composites, lead to projected high cell level practical energy densities of 400 Wh kg?1. The electrodes demonstrate negligible capacity loss over 250 cycles at 0.15 C and only 0.028% capacity loss per cycle over 810 cycles at 0.75 C. Eventual capacity fading is found to be linked to degradation of lithium‐metal anode suggesting that the cathode material remains stable over even more extended cycling.  相似文献   

11.
A unique nanostructure of 3D and vertically aligned and interconnected porous carbon nanosheets (3D‐VCNs) is demonstrated by a simple carbonization of agar. The key feature of 3D‐VCNs is that they possess numerous 3D channels with macrovoids and mesopores, leading to high surface area of 1750 m2 g?1, which play an important role in loading large amount of sulfur, while vertically aligned microporous carbon nanosheets act as the multilayered physical barrier against polysulfides anions and prevent their dissolution in the electrolyte due to strong adsorption during cycling process. As a result, the 3D hybrid (3D‐S‐VCNs) infiltered with 68.3 wt% sulfur exhibits a high and stable reversible capacity of 844 mAh g?1 at the current density of 837 mA g?1 with excellent Coulombic efficiency ≈100%, capacity retention of ≈80.3% over 300 cycles, and good rate ability (the reversible capacity of 738 mAh g?1 at the high current density of 3340 mA g?1). The present work highlights the vital role of the introduction of 3D carbon nanosheets with macrovoids and mesopores in enhancing the performance of LSBs.  相似文献   

12.
For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile?butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g?1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g?1). Moreover, high areal capacity of 7.4 mA h cm?2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm?2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.  相似文献   

13.
Li metal anodes are going through a great revival but they still encounter grand challenges. One often neglected issue is that most reported Li metal anodes are only cyclable under relatively low current density (<5 mA cm?2) and small areal capacity (<5 mAh cm?2), which essentially limits their high‐power applications and results in ineffective Li utilization (<1%). Herein, it is reported that surface alloyed Li metal anodes can enable reversible cycling with ultrafast rate and ultralarge areal capacity. Low‐cost Si wafers are used and are chemically etched down to 20–30 µm membranes. Simply laminating a Si membrane onto Li foil results in the formation of LixSi alloy film fused onto Li metal with mechanical robustness and high Li‐ion conductivity. Symmetric cell measurements show that the surface alloyed Li anode has excellent cycling stability, even under high current density up to 25 mA cm?2 and unprecedented areal capacity up to 100 mAh cm?2. Furthermore, the surface alloyed Li anode is paired with amorphous MoS3 cathode and achieves remarkable full‐cell performance.  相似文献   

14.
Freestanding cathode materials with sandwich‐structured characteristic are synthesized for high‐performance lithium–sulfur battery. Sulfur is impregnated in nitrogen‐doped graphene and constructed as primary active material, which is further welded in the carbon nanotube/nanofibrillated cellulose (CNT/NFC) framework. Interconnected CNT/NFC layers on both sides of active layer are uniquely synthesized to entrap polysulfide species and supply efficient electron transport. The 3D composite network creates a hierarchical architecture with outstanding electrical and mechanical properties. Synergistic effects generated from physical and chemical interaction could effectively alleviate the dissolution and shuttling of the polysulfide ions. Theoretical calculations reveal the hydroxyl functionization exhibits a strong chemical binding with the discharge product (i.e., Li2S). Electrochemical measurements suggest that the rationally designed structure endows the electrode with high specific capacity and excellent rate performance. Specifically, the electrode with high areal sulfur loading of 8.1 mg cm?2 exhibits an areal capacity of ≈8 mA h cm?2 and an ultralow capacity fading of 0.067% per cycle over 1000 discharge/charge cycles at C/2 rate, while the average coulombic efficiency is around 97.3%, indicating good electrochemical reversibility. This novel and low‐cost fabrication procedure is readily scalable and provides a promising avenue for potential industrial applications.  相似文献   

15.
Lithium–sulfur (Li–S) batteries are deemed to be one of the most promising energy storage technologies because of their high energy density, low cost, and environmental benignancy. However, existing drawbacks including the shuttling of intermediate polysulfides, the insulating nature of sulfur, and the considerable volume change of sulfur cathode would otherwise result in the capacity fading and unstable cycling. To overcome these challenges, herein an in situ assembly route is presented to fabricate VS2/reduced graphene oxide nanosheets (G–VS2) as a sulfur host. Benefiting from the 2D conductive and polar VS2 interlayered within a graphene framework, the obtained G–VS2 hybrids can effectively suppress the polysulfide shuttling, facilitate the charge transport, and cushion the volume expansion throughout the synergistic effect of structural confinement and chemical anchoring. With these advantageous features, the obtained sulfur cathode (G–VS2/S) can deliver an outstanding rate capability (≈950 and 800 mAh g?1 at 1 and 2 C, respectively) and an impressive cycling stability at high rates (retaining ≈532 mAh g?1 after 300 cycles at 5 C). More significantly, it enables superior cycling performance of high‐sulfur‐loading cathodes (achieving an areal capacity of 5.1 mAh cm?2 at 0.2 C with a sulfur loading of 5 mg cm?2) even at high current densities.  相似文献   

16.
Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm?2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.  相似文献   

17.
To develop a long cycle life and good rate capability electrode, 3D hierarchical porous α‐Fe2O3 nanosheets are fabricated on copper foil and directly used as binder‐free anode for lithium‐ion batteries. This electrode exhibits a high reversible capacity and excellent rate capability. A reversible capacity up to 877.7 mAh g?1 is maintained at 2 C (2.01 A g?1) after 1000 cycles, and even when the current is increased to 20 C (20.1 A g?1), a capacity of 433 mA h g?1 is retained. The unique porous 3D hierarchical nanostructure improves electronic–ionic transport, mitigates the internal mechanical stress induced by the volume variations of the electrode upon cycling, and forms a 3D conductive network during cycling. No addition of any electrochemically inactive conductive agents or polymer binders is required. Therefore, binder‐free electrodes further avoid the uneven distribution of conductive carbon on the current collector due to physical mixing and the addition of an insulator (binder), which has benefits leading to outstanding electrochemical performance.  相似文献   

18.
A facile and scalable approach is reported to stabilize the lithium‐metal anode by regulating the Li nucleation and deposition kinetics with laser‐induced graphene (LIG). By processing polyimide (PI) films on copper foils with a laser, a 3D‐hierarchical composite material is constructed, consisting of a highly conductive copper substrate, a pillared array of flexible PI, and most importantly, porous LIG on the walls of the PI pillars. The high number of defects and heteroatoms present in LIG significantly lowers the Li nucleation barrier compared to the copper foil. An overpotential‐free Li nucleation process is identified at current densities lower than 0.2 mA cm?2. Theoretical computations reveal that the defects serve as nucleation centers during the heterogeneous nucleation of lithium. By adopting such composites, ultrastable lithium‐metal anodes are obtained with high Coulombic efficiencies of ≈99%. Full lithium‐metal cells based on LiFePO4 cathodes with a material loading of ≈15 mg cm?2 and a negative/positive ratio of 5/1 could be cycled over 250 times with a capacity loss of less than 10%. The current work highlights the importance of nucleation kinetics on the stability of metallic anodes and demonstrates a practical method toward long lasting Li‐metal batteries.  相似文献   

19.
Freestanding composite structures with embedded transition metal dichalcogenides (TMDCs) as the active material are highly attractive in the development of advanced electrodes for energy storage devices. Most 3D electrodes consist of a bilayer design involving a core–shell combination. To further enhance the gravimetric and areal capacities, a 3D trilayer design is proposed that has MoSe2 as the TMDC sandwiched in‐between an inner carbon nanotube (CNT) core and an outer carbon layer to form a CNT/MoSe2/C framework. The CNT core creates interconnected pathways for the e?/Na+ conduction, while the conductive inert carbon layer not only protects the corrosive environment between the electrolyte and MoSe2 but also is fully tunable for an optimized Na+ storage. This unique heterostructure is synthesized via a solvothermal‐carbonization approach. Due to annealing under a confined structural configuration, MoSe2 interlayer spaces are expanded to facilitate a faster Na+ diffusion. It is shown that an ≈3 nm thick carbon layer yielded an optimized anode for a sodium‐ion battery. The 3D porosity of the heterostructure remains intact after an intense densification process to produce a high areal capacity of 4.0 mAh cm?2 and a high mass loading of 13.9 mg cm?2 with a gravimetric capacity of 347 mAh g?1 at 500 mA g?1 after 500 cycles.  相似文献   

20.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号