首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in alpha-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1Gy alpha-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect.  相似文献   

3.
Data concerning induction mechanisms, the objects and methods of investigation of a non-target radiobiological phenomenon bystander effect, its role in radiation-induced genomic instability and oncogenesis are summarized.  相似文献   

4.
Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.  相似文献   

5.
Research data on the developmental mechanisms and subjects and methods of studying a nontarget radiation phenomenon, called the “bystander effect,” are generalized and analyzed, and its role in radiation-induced genomic instability and oncogenesis is studied. A natural model system is developed for identifying radiation-induced cytogenetic bystander effect in human somatic cells. These cells should be collected from a population of peripheral blood lymphocytes that has been irradiated in vitro or in vivo (as the source of the damaging signal) along with a population of nonirradiated lymphocytes of individuals of the opposite sex, which are used as “bystanders.”  相似文献   

6.
Ionizing radiation induces genomic instability, transmitted over many generations through the progeny of surviving cells. It is manifested as the expression of delayed effects such as delayed cell death, delayed chromosomal instability and delayed mutagenesis. Induced genomic instability exerts its delayed effects for prolonged periods of time, suggesting the presence of a mechanism by which the initial DNA damage in the surviving cells is memorized. Our recent studies have shown that transmitted memory causes delayed DNA breakage, which in turn activates DNA damage checkpoint, and is involved in delayed manifestation of genomic instability. Although the mechanism(s) involved in DNA damage memory remain to be determined, we suggest that ionizing radiation-induced mega-base deletion destabilizes chromatin structure, which can be transmitted many generations through the progeny, and is involved in initiation and perpetuation of genomic instability. The possible involvement of delayed activation of a DNA damage checkpoint in the delayed induction of genomic instability in bystander cells is also discussed.  相似文献   

7.
The term radiation-induced bystander effect is used to describe radiation-induced biological changes that manifest in unirradiated cells remaining within an irradiated cell population. Despite their failure to fit into the framework of classical radiobiology, radiation-induced bystander effects have entered the mainstream and have become established in the radiobiology vocabulary as a bona fide radiation response. However, there is still no consensus on a precise definition of radiation-induced bystander effects, which currently encompasses a number of distinct signal-mediated effects. These effects are classified here into three classes: bystander effects, abscopal effects and cohort effects. In this review, the data have been evaluated to define, where possible, various features specific to radiation-induced bystander effects, including their timing, range, potency and dependence on dose, dose rate, radiation quality and cell type. The weight of evidence supporting these defining features is discussed in the context of bystander experimental systems that closely replicate realistic human exposure scenarios. Whether the manifestation of bystander effects in vivo is intrinsically limited to particular radiation exposure scenarios is considered. The conditions under which radiation-induced bystander effects are induced in vivo will ultimately determine their impact on radiation-induced carcinogenic risk.  相似文献   

8.
Wright EG  Coates PJ 《Mutation research》2006,597(1-2):119-132
The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences.  相似文献   

9.
WF Morgan 《Radiation research》2012,178(2):AV223-AV236
A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.  相似文献   

10.
Morgan WF 《Radiation research》2003,159(5):567-580
A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.  相似文献   

11.
Exposure to ionizing radiation may induce a heritable genomic instability phenotype that results in a persisting and enhanced genetic and functional change among the progeny of irradiated cells. Since radiation-induced bystander effects have been demonstrated with a variety of biological end points under both in vitro and in vivo conditions, this raises the question whether cytoplasmic irradiation or the radiation-induced bystander effect can also lead to delayed genomic instability. In the present study, we used the Radiological Research Accelerator Facility charged-particle microbeam for precise nuclear or cytoplasmic irradiation. The progeny of irradiated and the bystander human hamster hybrid (A(L)) cells were analyzed using multicolor banding (mBAND) to examine persistent chromosomal changes. Our results showed that the numbers of metaphase cells involving changes of human chromosome 11 (including rearrangement, deletion and duplication) were significantly higher than that of the control in the progeny of both nuclear and cytoplasmic targeted cells. These chromosomal changes could also be detected among the progeny of bystander cells. mBAND analyses of clonal isolates from nuclear and cytoplasm irradiations as well as the bystander cell group showed that chromosomal unstable clones were generated. Analyses of clonal stability after long-term culture indicated no significant change in the number of unstable clones for the duration of culture in each irradiated group. These results suggest that genomic instability that is manifested after ionizing radiation exposure is not dependent on direct damage to the cell nucleus.  相似文献   

12.
In the review which is a brief account of more complete document (Koterov A.N. // Int. J. Low Radiat. 2005. V. 1. No. 4. P. 376-451) the data of world researches devoted to a phenomenon of radiation-induced genomic instability (RIGI) are considered. The purpose of the review is the definition of the bottom limit of radiation doses which induced of RIGI in experiments at different methodical approaches (irradiation in vitro, in vivo, in utero, bystander effect and transgeneration effects of radiation). The action only radiation with low LET is examined. Among several hundreds works wasn't revealed any fact, when RIGI induced by low doses irradiation (up to 0.2 Gy) for normal cells and for organism left from maternal womb. Six exceptions are revealed which are named as "apparent" so in all cases the abnormal, unstable, defective objects or ambiguous final parameter were used. Thus, RIGI at low doses of radiation with low LET is a myth.  相似文献   

13.
The major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by a number of delayed responses including chromosomal abnormalities, gene mutations and cell death. Bystander effects include increases or decreases in damage-inducible and stress-related proteins, increases or decreases in reactive oxygen and nitrogen species, cell death or cell proliferation, cell differentiation, radioadaptation, induction of mutations and chromosome aberrations and chromosomal instability. The phenotypic expression of untargeted effects and the potential consequences of these effects in tissues reflect a balance between the type of bystander signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. Thus, in addition to targeted effects of damage induced directly in cells by irradiation, a variety of untargeted effects may also make important short-term and long-term contributions to determining overall outcome after radiation exposures.  相似文献   

14.
Communication between irradiated and un-irradiated (bystander) cells can cause damage in cells that are not directly targeted by ionizing radiation, a process known as the bystander effect. Bystander effects can also lead to chromosomal/genomic instability within the progeny of bystander cells, similar to the progeny of directly irradiated cells. The factors that mediate this cellular communication can be transferred between cells via gap junctions or released into the extracellular media following irradiation, but their nature has not been fully characterized. In this study we tested the hypothesis that the bystander effect mediator contains an RNA molecule that may be carried by exosomes. MCF7 cells were irradiated with 2 Gy of X rays and the extracellular media was harvested. RNase treatment abrogated the ability of the media to induce early and late chromosomal damage in bystander cells. Furthermore, treatment of bystander cells with exosomes isolated from this media increased the levels of genomic damage. These results suggest that the bystander effect, and genomic instability, are at least in part mediated by exosomes and implicate a role for RNA.  相似文献   

15.
Morgan WF 《Radiation research》2003,159(5):581-596
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.  相似文献   

16.
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic "hit-effect" relationships and towards complex ongoing "cellular responses". These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as bystander effects, genomic instability, and adaptive responses. All three have been observed at very low doses, and at time points far removed from the initial radiation exposure, and are extremely relevant for linear extrapolation to low doses; the adaptive response is particularly relevant when exposure is spread over a period of time. These are precisely the circumstances that are most relevant to understanding cancer risk associated with environmental and occupational radiation exposures. This review will provide a synthesis of the known, and proposed, interrelationships amongst low-dose cellular responses to radiation. It also will examine the potential importance of non-targeted cellular responses to ionizing radiation in setting acceptable exposure limits especially to low-LET radiations.  相似文献   

17.
A stochastic model of cancer initiation is considered. The model is used to evaluate whether a bystander effect may be important in the pre-malignant and malignant stages of carcinogenesis, and furthermore, on the basis of epidemiological data, to estimate the mutation rates of genes involved in the development of oral leukoplakias. The bystander effect is defined here as the capability of oncogenic mutations to increase the mutation probability of neighbouring (bystander) cells, thus leading potentially to a cascade of neighbouring mutated and neoplastic cells as a pre-stage in the development to leukoplakias and cancer. We find that incidence data for oral cancer are indeed in accordance with a significant bystander effect, operating either alone or in combination with genomic instability in the early stages of carcinogenesis, i.e. the development of neoplasia. Simulations performed gave a picture of how mutations and neoplasia may spread in a tissue, to form characteristic leukoplakias with a core of neoplastic cells. The model also showed that the probability of finding at least one neoplastic cell in the tissue after a given number of years is more sensitive to changes in genomic instability within the cell itself than to changes in a bystander effect. Based on epidemiological data we also calculate the maximum number of oncogenic genes that may be involved in the bystander effect and development of genomic instability. Even if capable of explaining the initial development of oncogenic mutations towards neoplastic cells, the bystander model could not reproduce the observed incidence rates of leukoplakia without assuming a carcinogen mutation probability per cell per year of neoplastic cells practically equal to one. This means that the bystander effect, to be of substantial importance in the final development of neoplastic cells towards leukoplakias, requires a very significant increase in mutation probabilities for bystanders to neoplastic cells. Alternatively, additional mechanisms such as abnormal cell differentiation and uncontrolled proliferation and apoptotis in the neoplastic stage may be of major importance during the development to cancerization.  相似文献   

18.
Clusterin (CLU) plays numerous roles in mammalian cells after stress. A review of the recent literature strongly suggests potential roles for CLU proteins in low dose ionizing radiation (IR)-inducible adaptive responses, bystander effects, and delayed death and genomic instability. Its most striking and evident feature is the inducibility of the CLU promoter after low, as well as high, doses of IR. Two major forms of CLU, secreted (sCLU) and nuclear (nCLU), possess opposite functions in cellular responses to IR: sCLU is cytoprotective, whereas nCLU (a byproduct of alternative splicing) is a pro-death factor. Recent studies from our laboratory and others demonstrated that down-regulation of sCLU by specific siRNA increased cytotoxic responses to chemotherapy and IR. sCLU was induced after low non-toxic doses of IR (0.02-0.5 Gy) in human cultured cells and in mice in vivo. The low dose inducibility of this survival protein suggests a possible role for sCLU in radiation adaptive responses, characterized by increased cell radioresistance after exposure to low adapting IR doses. Although it is still unclear whether the adaptive response is beneficial or not to cells, survival of damaged cells after IR may lead to genomic instability in the descendants of surviving cells. Recent studies indicate a link between sCLU accumulation and cancer incidence, as well as aging, supporting involvement of the protein in the development of genomic instability. Secreted after IR, sCLU may also alter intracellular communication due to its ability to bind cell surface receptors, such as the TGF-beta receptors (types I and II). This interference with signaling pathways may contribute to IR-induced bystander effects. We hypothesize that activation of the TGF-beta signaling pathway, which often occurs after IR exposure, can in turn activate the CLU promoter. TGF-beta and IR-inducible de novo synthesized sCLU may then bind the TGF-beta receptors and suppress downstream growth arrest signaling. This complicated negative feedback regulation most certainly depends on the cellular microenvironment, but undoubtedly represents a potential link between IR-induced adaptive responses, genomic instability and bystander effects. Further elucidation of clusterin protein functions in IR responses are clearly warranted.  相似文献   

19.
Photons are widely used in radiotherapy and while they are low LET radiation, can still pose a risk in developing second malignant neoplasms (SMN). Due to the physics of photons that allow distribution of energy outside the target volume, out-of-field irradiation is an important component of SMN risk assessment. The epidemiological evidence supporting this risk should be augmented with radiobiological justifications for a better understanding of the underlying processes.There are several factors that impact second cancer risk which can be analysed from a radiobiological perspective: age at irradiation, type of irradiated tissue, irradiated volume, treatment technique, previous irradiation/radiological investigations. Age-dependence has a radiobiological foundation given by the higher radiosensitivity of children as compared to adult patients. However, in its 2013 report, UNSCEAR advises against generalisation of the effects of childhood radiation exposure, given the fact that these effects are strongly organ dependent. Furthermore, the age-dependent radiation sensitivity has a bimodal distribution, since aging cells present an increase in the oxidative stress, which can promote premalignant cells.Non-targeted effects such as radiation-induced genomic instability, bystander or abscopal effects could also impact on the risk of SMN. Recent studies show that beside the known cellular changes, bystander effects can be manifested through increased cell proliferation, which could be a culprit for SMN development. Furthermore, new evidence on the existence of tumour-specific cancer stem cells that are long-lived and more quiescent and radioresistant than non-stem cancer cells can raise questions about their association with SMN risk.  相似文献   

20.
This paper aims to stimulate discussion about the relevance for radiation protection of recent findings in low-dose radiobiology. Issues are raised which suggest that low-dose effects are much more complex than has been previously assumed. These include genomic instability, bystander effects, multiple stressor exposures and chronic exposures. To date, these have been accepted as being relevant issues, but there is no clear way to integrate knowledge about these effects into the existing radiation protection framework. A further issue which might actually lead to some fruitful approaches for human radiation protection is the need to develop a new framework for protecting non-human biota. The brainstorming that is being applied to develop effective and practical ways to protect ecosystems widens the debate from the narrow focus of human protection which is currently about protecting humans from radiation-induced cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号