首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以亚热带常绿阔叶林下一种常见的灌木富贵草(Pachysandra terminalis)为研究对象,利用气体交换和叶绿素荧光技术研究了其对模拟光斑的光合响应。在同样辐射通量(非光抑制)的情况下,光合诱导过程的快速组分时间内光斑可以提高富贵草对光斑的利用能力(光斑诱导的碳同化量可高出对照48%)。叶绿素荧光测量结果表明:1)光斑与光斑之间的暗期发生了qN弛豫过程;2)暗期之后的光期光化学能量转换效率提高。这两个原因可能是快速组分时间内光斑诱导富贵草的碳同化量提高的主要原因之一。强光光斑簇可以诱导富贵草光抑制  相似文献   

2.
未诱导的人参叶片碳同化和光合效率在间断光斑下呈持续增加,并达到稳态光合状态。叶片光合碳同化随光斑持续时间的增加而增加,但光合效率下降。光斑持续时间越短,光量子密度越大,光合效率越高。与强光下叶片相比,弱光下生长的叶片在光斑期间的光合效率大些。  相似文献   

3.
在红光LED频闪光照射下,采用光合测定系统(CIRAS-2)和光纤光谱仪(QE65),同步测定了闪光频率下番茄叶片的净光合速率Pn、气孔导度Gs、胞间二氧化碳浓度Ci和叶绿素荧光信号F的动态响应。随着闪光频率从0.01 Hz向10.00 Hz增加,Pn振荡幅度减小,至0.25 Hz以上时Pn振荡幅度不显著;光合光能转化效率LCE'逐渐上升至0.25 Hz以上时达最大;与光系统Ⅱ光化学活性的初级醌受体暗期再氧化程度或光期再还原程度有关的光脉冲荧光相对变化量Fpcr也从较高水平迅速下降,至0.12 Hz时达最低值,之后较快回升,至0.50 Hz以上趋稳并接近于中等水平,显示出ATP池和NADPH池的较强缓冲能力。频闪光的光期Gs始终维持在较高水平,对外界CO2进入胞间的Ci无显著影响。而频闪光的光→暗期间的光后光合碳吸收衰减或暗→光期间的暗后光合碳吸收再启动过程的相对同化负荷变化量ΔACr在0.10 Hz以上衰减趋0,暗示着核酮糖-1,5-二磷酸(ribulose-1,5-bisphosphate,RuBP)的消耗与再生趋于平衡状态,呈现出较强的RuBP池的缓冲能力。综合分析表明,频闪光下,ATP池、NADPH池和RuBP池呈现出的联合缓冲能力,对光后暗期或暗后光期RuBP的持续再生或再生恢复均有维持效应,从而增加闪光频率即相应缩短暗期和光期,致使光合碳吸收Pn的暗期下降幅度减小和光期上升幅度减少,呈现Pn振荡幅度减小至趋稳的现象。  相似文献   

4.
利用气体交换观察、叶绿素荧光分析和QB蛋白含量的测定3种方法,研究了常绿灌木珊瑚树叶片的光合作用在上海深秋初冬自然条件下的光抑制,以便确定在除光以外不存在其它环境胁迫的自然条件下光合机构的破坏是否是引起光抑制的主要原因。经过中午3h左右的强光照射以后,珊瑚树叶片的表观量子效率(AQY)和PSⅡ光化学效率(Fv/Fm)明显下降,表明珊瑚树叶在自然条件下经常发生光抑制。而且,经中午强光照射以后,叶片的初始荧光(F0)下降;非光化学荧光猝灭的慢弛豫成分(qEslow)上升;光饱和的光合速率略有下降;中午光照后降低了的AQY和Fv/Fm在叶片离开强光1h以后基本恢复;模拟中午光照的强光处理对叶片的QB蛋白含量没有明显的影响。这些事实都说明这种光抑制发生的主要原因是非光辐射能量耗散的增加,光合机构的破坏即使发生,也是很轻微的。  相似文献   

5.
水淹导致皇冠草光合机构发生变化并加剧其出水后光抑制   总被引:6,自引:0,他引:6  
谷昕  李志强  姜闯道  石雷  张会金  邢全 《生态学报》2009,29(12):6466-6474
通过气体交换和叶绿素荧光等方法研究了水淹及胁迫解除后皇冠草不同功能叶的光合特性及光抑制的变化.结果表明:与对照相比,气生叶(全淹组淹水前形成的功能叶)在水淹条件下叶片大小和气孔没有明显变化,但沉水叶(全淹组淹水后新生的功能叶)的叶面积增加,气孔变小,上表皮气孔密度增加.水淹导致气生叶碳同化能力、光化学效率和叶绿素含量下降.沉水叶在发育过程中碳同化能力、光化学效率和叶绿素逐渐升高.气生叶和沉水叶出水后其活体叶片在强光下的相对含水量急剧下降,发生明显的光抑制;而弱光下无明显光抑制发生.出水后离体叶片强光照射下6h后两种功能叶均发生严重光抑制,且弱光下不能恢复.因此,可以认为淹水条件下,沉水叶上表皮气孔密度的增加使其蒸腾速率提高;沉水叶较强的碳同化能力和增加的叶面积是确保其植株水下生存的重要因素;强光使气生叶和沉水叶出水后均发生严重光抑制,导度和蒸腾速率提高导致的叶片失水则加剧了这一过程,两者共同作用导致自然条件下两种功能叶的出水死亡.  相似文献   

6.
两个品种烟草叶片发育过程中几种光合参数变化的比较   总被引:3,自引:0,他引:3  
比较烟草2个品种‘NC89’和‘JYH’叶片发育过程中几个光合参数变化的结果表明,烟草叶片发育过程中光合速率变化表现为上升期、高值持续期(APD)和速降期,叶绿素含量变化经历上升期、相对稳定期(RSP)和速降期。光合功能衰退过程中,核酮糖.1,5-二磷酸羧化酶(RuBPCase)活性比电子传递活性下降快。可逆衰退阶段的2个品种类囊体膜多肽组分和‘NC89’的核酮糖-1,5-二磷酸羧化酶加氧酶(Rubisco)大亚基基本上无变化;不可逆衰退阶段的2个品种类囊体膜多肽组分、Rubisco大小亚基均快速降解,尤其是光系统Ⅱ(PSⅡ)复合体和Rubisco小亚基。‘JYH’的叶龄为10-40d的叶中各光合参数与‘NC89’的差别不大,但‘JYH’的光合功能期短,光合功能衰退过程中光合电子传递与碳同化失衡较严重,光合功能衰退比‘NC89’早而迅速。  相似文献   

7.
杉木中龄林针叶光合作用对光斑的响应   总被引:4,自引:1,他引:3       下载免费PDF全文
对18年生杉木(Cunninghamia lanceolata(Lamb.)Hook.)当年生针叶净光合速率(Pn)对不同时间和强度的猝发性辐射和模拟光斑响应的研究表明:经长时间低光或暗处理后针叶的Pn对猝发性连续强光的响应呈S形曲线,约需10~15min的光诱导才能达到相应光强下的最大值;猝发性辐射强度越大,所需光诱导时间越长;低光期越长,低光期辐射越小,所需光诱导期越长;但只要光斑间隔不是太长,针叶仍可保持原有的光诱导状态。针叶Pn对单个瞬时光斑的响应与光斑前的光诱导状态和光斑时间长短有关,充分诱导的针叶Pn对光斑的响应较未诱导或未充分诱导的针叶要灵敏得多,光斑时间延长可提高光诱导状态,从而提高Pn。光斑消失后Pn缓慢下降表明针叶对光斑的响应存在明显的光后CO2固定,在瞬时光斑较多的林内,光后CO2固定可占总同化量的相当大比例。  相似文献   

8.
林木非同化器官树枝(干)光合功能研究进展   总被引:1,自引:0,他引:1  
王文杰  祖元刚  王慧梅 《生态学报》2007,27(4):1583-1595
尽管多数林木非同化器官树干、树枝内都存在绿色组织(Chlorenchyma),但是其生态学意义很少为人注意。综合前人研究结果,得出以下结论:(1)树枝的光合速率(暗呼吸与饱和光照下呼吸之差)的在0~10μmolm^-2s^-1之间,而大部分的结果认为光合速率在0.5~3.Oμmolm^-2s^-1之间。而且多数研究认为其是对自身呼吸的再固定,而不是对外界大气CO2的吸收,对再固定率(光合/呼吸比值)分析表明80%以上的研究结果认为树干光合作用能够固定40%~100%呼吸所释放的CO2。但其对个体乃至林分整体碳平衡的影响报道的较少。(2)不仅非同化器官光合作用直接影响其呼吸作用,冠层叶片光合产物对非同化器官的气体代谢也产生显著影响,但新形成光合产物和储藏碳水化合物是否存在功能上的差异不同学者意见不一。(3)尽管叶绿素含量多在80~450mgm^-2之间,低于相应叶片叶绿素含量340~620mgm^-2,但其叶绿素a/b平均值(2.5)显著低于叶片的平均值(3.6)(P〈0.0001),说明更加适应于阴生环境。(4)有关类胡萝卜素在非同化器官的功能,比较传统的观点认为其单位质量或者单位面积含量远低于叶片,是一种适应于低光照环境的表现,但最近研究表明其单位叶绿素含量远高于叶片,可能是在高浓度CO2条件下、叶绿体片层结构酸性化导致光合过程中光化学淬灭能力低下,需要以叶黄素循环为主导能量淬灭过程保证其功能正常。(5)在树皮光学特性方面,大部分光照被吸收,而有少部分被反射和透射。在透光率方面,70%左右的结果认为树皮的透光率在5%~15%之间,而超过85%的结果认为透光率在0%~20%之间。而且光照可以在木质化树干导管、纤维及管胞有效进行轴向导光,树干内部的光以红外和远红外光为主,其它低波长光的透射能力远低于红外光。(6)尽管已有研究表明某些草本植物茎具有C4特征,但对于多数、特别是木本植物未见报道,特别是对于茎内高浓度CO2、高红/蓝光比、低氧特征对光合机构的影响尚需要深入研究。  相似文献   

9.
为了解种植模式对谢君魔芋(Amorphophallus xiei)光合作用的影响,研究了间作和净作模式下谢君魔芋的光合作用和光合诱导特征。结果表明,间作模式下的谢君魔芋净光合速率(Pn)比净作模式的高18.97%,最大气孔导度(gs-max)比净作模式的小22.4%,且间作模式下谢君魔芋有较高的表观量子产额(AQY)、光饱和点(LSP)、羧化效率(CE)、叶绿素含量以及较小的暗呼吸速率(Rd)、光补偿点(LCP)、CO_2补偿点(Г*)。高光照诱导后,间作模式下的光合诱导状态(IS)大于净作模式,且在间作模式下光合诱导过程中达到最大光合速率(Pmax)和最大气孔导度(gs-max)的30%、50%所需时间较短;同时,光合诱导过程中达到Pmax和gs-max的30%、50%和90%的时间(t30%P、t50%P、t90%P和t30%gs、t50%gs、t90%gs)与gs-initial呈负相关关系。因此,玉米-魔芋间作下,谢君魔芋通过增大AQY和LSP、减小Rd和LCP等来提高光的利用能力及维持碳平衡;同时通过快速的光合诱导,提高对光斑的利用能力从而增加碳获得。  相似文献   

10.
冯晓龙  刘冉  马健  徐柱  王玉刚  孔璐 《生态学报》2021,41(24):9784-9795
植物枝干光合(Pg)固定其自身呼吸所释放的CO2,有效减少植物向大气的CO2排放量。以古尔班通古特沙漠优势木本植物白梭梭(Haloxylon persicum)为研究对象,利用LI-COR 6400便携式光合仪与特制光合叶室(P-Chamber)相结合,观测白梭梭叶片、不同径级枝干的光响应及光合日变化特征;同时监测环境因子(大气温湿度、光合有效辐射、土壤温度及含水量等)与叶片/枝干性状指标(叶绿素含量、含水量、干物质含量、碳/氮含量等),揭示叶片/枝干光合的主要影响因子;采用破坏性取样,量化个体水平上叶片与枝干的总表面积,阐明枝干光合对植株个体碳平衡的贡献。研究结果显示:(1)白梭梭叶片叶绿素含量是枝干叶绿素含量的12-16倍,各径级枝干叶绿素含量差异不显著;(2)枝干光饱和点低于叶片,枝干不同径级(由粗至细),暗呼吸速率和枝干光合逐渐减小;(3)光合有效辐射、土壤含水量和空气温湿度是影响叶片光合的主要因子,对枝干光合无显著影响;(4)枝干光合可以固定其自身呼吸产生CO2的73%,最高可达90%,枝干光合固定CO2约占个体水平固碳量的15.4%。研究结果表明,忽视枝干光合的贡献来预测未来气候变化背景下荒漠生态系统碳过程,可能存在根本性缺陷,并且在估算枝干呼吸时,需要考虑枝干是否存在光合作用,以提高枝干呼吸的准确性。  相似文献   

11.
The photosynthetic induction state under conditions of different lightfleck frequencies or durations, or different shade periods was studied in soybean leaves in order to examine how it might limit utilization of sunflecks in leaf canopies. Induction following an increase in photon flux density (PFD) from strongly limiting to saturating PFDs exhibited two phases; a fast-inducing one, requiring about 1 min and a slow one, requiring up to 60 min for completion. Transfer of fully induced leaves to low light resulted in a rapid decrease in the fast-inducing component, a slower decrease in the slow-inducing component and an even slower decrease in stomatal conductance. Therefore, the decreases in extent of induction appeared to be due to biochemical factors and not to stomatal closure. Under flashing light regimes consisting of 1-s lightflecks given at different frequencies for long periods, a constant induction state was achieved, the measure of induction state increased with the frequency of the lightflecks. This constant induction state also depended on the growth conditions, with shade leaves having a higher value than those grown at high light at any particular lightfleck frequency. The measure of induction state was mostly lower in flashing light as compared to constant light of the same mean PFD, particularly in leaves with a low light saturation point and in short lightflecks. Initial activities of ribulose-1,5-bisphosphate carboxylase (rubisco) were also higher in continuous light and were highly correlated with the measure of induction state. The rapid decrease in extent of induction of soybean leaves during shade periods is an important limitation to the ability of the leaves to respond to light increases similar to those occurring with sunflecks. At least part of the limitation on carbon assimilation during sunflecks due to photosynthetic induction is based on regulation of rubisco activity.  相似文献   

12.
Leaves of soybean plants grown in contrasting light and nutrient availability conditions were exposed to constant and to flashing light regimes with lightflecks of different frequencies, durations and photon flux density (PFD). The lightfleck characteristics were selected to be representative of the range of variation found for sunflecks in a soybean canopy. CO2 fixation rates were measured using a fast-response gas-exchange apparatus. The net CO2 fixation due to 1-s-duration lightflecks was 1·3 times higher than predicted from steady-state measurements in constant light at the lightfleck and background PFD. This lightfleck utilization efficiency (LUE) was somewhat higher at a high than at a low frequency of one second lightflecks. LUE in flashing light with very short lightflecks (0·2s) and single 1 s lightflecks was as high as 2, but decreased sharply with increasing duration of lightflecks. This decrease occurred because CO2 fixation rates during lightflecks were constrained by carbon metabolism and induction limitations, and because the contribution of post-illumination CO2 fixation to total CO2 fixation decreased with increased duration of lightflecks. LUE increased with increased PFD during the lightflecks, particularly in leaves from plants grown in high-light, high-nutrient conditions. Saturation PFDs were much higher in flashing light than in constant light. Only small differences in LUE were apparent between leaves from the three growth conditions.  相似文献   

13.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

14.
Krall JP  Pearcy RW 《Plant physiology》1993,103(3):823-828
Leaves of maize (Zea mays L.) were enclosed in a temperature-controlled cuvette under 35 Pa (350 [mu]bars) CO2 and 0.2 kPa (0.2%)O2 and exposed to short periods (1-30 s) of illumination (light-flecks). The rate and total amount of CO2 assimilated and O2 evolved were measured. The O2 evolution rate was taken as an indicator of the rate of photosynthetic noncyclic electron transport (NCET). In this C4 species, the response of electron transport during the lightflecks qualitatively mimicked that of C3 species previously tested, whereas the response of CO2 assimilation differed. Under short-duration lightflecks at high photon flux density (PFD), the mean rate of O2 evolution was greater than the steady-state rate of O2 evolution under the same PFD due to a burst of O2 evolution at the beginning of the lightfleck. This O2 burst was taken as indicating a high level of NCET involved in the buildup of assimilatory charge via ATP, NADPH, and reduced or phosphorylated metabolites. However, as lightfleck duration decreased, the amount of CO2 assimilated per unit time of the lightfleck (the mean rate of CO2 assimilation) decreased. There was also a burst of CO2 from the leaf at the beginning of low-PFD lightflecks that further reduced the assimilation during these lightflecks. The results are discussed in terms of the buildup of assimilatory charge through the synthesis of high-energy metabolites specific to C4 metabolism. It is speculated that the inefficiency of carbon uptake during brief light transients in the C4 species, relative to C3 species, is due to the futile synthesis of C4 cycle intermediates.  相似文献   

15.
Summary Responses of leaf gas exchange in shade and half-shade grown seedlings of the European beech, Fagus sylvatica L., to constant light conditions indicate different phases of photosynthetic induction: an immediate, a fast and a subsequent slow phase. The slow phase has both biochemical and stomatal components. The higher the induction, the higher the lightfleck utilization efficiency (LUE) attributable to a lightfleck. LUE can be higher than 100% compared to a theoretical instantaneous response. Lightfleck quantum yield (total carbon gain attributable to a lightfleck per incident quantum density in the fleck) is highest in short pulses of light. Post-illumination carbon gain initially increases with fleck length, levelling off above 20 s. The lower the induction, the longer carbon is fixed post-illuminatively (up to 84 s) but the less carbon is gained. Shade leaves are induced much faster than partial shade leaves. They utilize series of lightflecks to become fully induced, while half-shade (and sun) leaves depend on continuous high light. Half-shade leaves lose induction faster in low light between lightflecks. High as well as low temperatures strongly delay induction in half-shade but not in shade leaves. In general, shade leaves are much better adapted to the dynamic light environment of the forest understorey; however, their water-use efficiency during induction is lower.Dedicated to Prof. O. L. Lange on the occasion of his 65th birthday  相似文献   

16.
Alocasia (Alocasia macrorrhiza [L.] G. Don) and soybean (Glycine max [L.]) were grown under high or low photon flux density (PFD) conditions to achieve a range of photosynthetic capacities and light-adaptation modes. The CO2 assimilation rate and in vivo linear electron transport rate (Jf) were determined over a range of PFDs and under saturating 1-s-duration lightflecks applied at a range of frequencies. At the same mean PFD, the assimilation rate and the Jf were lower under the lightfleck regimes than under constant light. The activation state of two, key enzymes of the photosynthetic carbon reduction cycle pathway, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose-1,6-bisphosphatase, and the photosynthetic induction states (ISs) were also found to be lower under flashing as compared to continuous PFD. Under all conditions, the IS measured 120 s after an increase in PFD to constant and saturating values was highly correlated with the Rubisco activation state and stomatal conductances established in the light regime before the increase. Both the fructose-1,6-bisphosphatase and Rubisco activities established in a particular light regime were highly correlated with the mean Jf in that regime. The relationships between enzyme activation state and Jf and between IS and enzyme activation state were similar in soybean and Alocasia and were not affected either by growth-light regime, and hence photosynthetic capacity, or by flashing versus constant PFD. The common relationship between the linear Jf and the activation state of key enzymes suggests that electron transport may be the determinant of the signal regulating IS, at least to the extent that the IS is controlled by the activation state of key stromal enzymes.  相似文献   

17.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

18.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   

19.
We report the photosynthetic characteristics of a C3 shade plant native to the tropical rain forest understory. It was shown that Elatostema repens Lour. (Hall) f. (Urticaceae) presents a large light adjustment capacity. The effects of several lightfleck sequences on photoinhibition of photosynthesis and carbon gain are analyzed. Photoinhibition is measured both as a decrease in leaf net CO2 uptake in limiting light (shown to be linearly correlated to quantum yield of O2 evolution measured at saturating CO2) and as a decrease of the ratio of variable fluorescence (Fv) to maximum fluorescence (Fmax) measured in liquid nitrogen. It is shown that lightflecks (from 10 to 30 min in duration) of 700 μmol m–2 s–1 (high light) induce photoinhibition, and that the effects of those successive high light periods are additive; there is apparently no recovery from photoinhibition during the low light periods (from 10 to 45 min in duration). In contrast, the Fv/Fmax ratio, though decreasing similarly to quantum yield of net CO2 uptake on leaves submitted to a continuous illumination of 700 μmol m–2 s–1, is only decreased a little on leaves submitted to lightfleck sequences of the same photon flux density. Lightflecks of 250 μmol m–2 s–1 are not photoinhibitory. Compared to the control maintained under light growth condition (40 μmol m–2 s–1) carbon gain is increased on leaves submitted to lightflecks; this gain remains high throughout the light cycles on leaves submitted to nonphotoinhibitory lightflecks and to the photoinhibitory lightflecks followed by the shortest low light period. In the other cases, carbon gain, higher than that of the control at the beginning of the treatments, decreases and becomes lower than the control carbon gain. Finally, the relevance of photoinhibition in the tropical rain forest understory environment is discussed.  相似文献   

20.
Observations of stomata in situ while simultaneously measuring CO(2) gas exchange and transpiration were made in field experiments with Aegopodium podagraria in a highly variable light climate in the understorey of trees. The low background photosynthetic photon flux density (PPFD) caused a slight opening of the stomata and no visible response to sporadic lightflecks. However, if lightflecks were frequent and brighter, slow opening movements were observed. Small apertures were sufficient to allow maximal photosynthetic rates. Therefore, the small apertures observed in low light usually only caused minor stomatal limitations of lightfleck photosynthesis. The response of stomata to step-wise changes in PPFD under different levels of leaf to air vapour pressure difference (Delta(W)) was observed under controlled conditions. High Delta(W) influenced the stomatal response only slightly by reducing stomatal aperture in low light and causing a slight reduction in the initial capacity to utilize high PPFD levels. Under continuous high PPFD, however, stomata opened to the same degree irrespective of Delta(W). Under high Delta(W), opening and closing responses to PPFD-changes were faster, which enabled a rapid removal of the small stomatal limitations of photosynthesis initially present in high Delta(W) after longer periods in low light. It is concluded that A. podagraria maintains a superoptimal aperture in low light which leads to a low instantaneous water use efficiency, but allows an efficient utilization of randomly occurring lightflecks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号