首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of thiamine triphosphate (ThTP) and thiamine diphosphate (ThDP) on the activity of rat liver pyruvate dehydrogenase complex regulatory enzymes (kinase and phosphatase) was studied in experiments with isolated enzyme preparations. It is shown that ThDP caused a pronounced activation of pyruvate dehydrogenase phosphatase (Ka is equal to 65.0 nM). ThTP inhibits phosphatase competitively against the substrate--the phosphorylated pyruvate dehydrogenase complex. The both thiamine phosphates inhibit the pyruvate dehydrogenase kinase activity almost similarly in concentrations exceeding 10 microM. The physiological significance of the antagonistic action of ThDP and ThTP on the pyruvate dehydrogenase phosphatase activity is discussed.  相似文献   

2.
Four pyruvate dehydrogenase kinase and two pyruvate dehydrogenase phosphatase isoforms function in adjusting the activation state of the pyruvate dehydrogenase complex (PDC) through determining the fraction of active (nonphosphorylated) pyruvate dehydrogenase component. Necessary adaptations of PDC activity with varying metabolic requirements in different tissues and cell types are met by the selective expression and pronounced variation in the inherent functional properties and effector sensitivities of these regulatory enzymes. This review emphasizes how the foremost changes in the kinase and phosphatase activities issue from the dynamic, effector-modified interactions of these regulatory enzymes with the flexibly held outer domains of the core-forming dihydrolipoyl acetyl transferase component.  相似文献   

3.
Effects of Dichloroacetate on Brain Tissue Pyruvate Dehydrogenase   总被引:3,自引:1,他引:2  
The activation of the pyruvate dehydrogenase complex (PDHC) by dichloroacetate (DCA) was studied in brain tissue. Chronic administration of DCA to rats caused no significant change of PDHC activation in brain. DCA brain concentrations were comparable to those of other tissues in which activation is known to occur. No effect of DCA on PDHC could be demonstrated from isolated brain mitochondria, whereas DCA reversed the deactivation of PDHC by ATP, alpha-ketoglutarate plus malate, and succinate in liver mitochondria. This study suggests that the regulation of PDHC activation in neural tissue differs from that in other tissues.  相似文献   

4.
Abstract: A spectrophotometric assay for the brain pyruvate dehydrogenase complex (PDHC) with arylamine acetyltransferase (ArAT; EC 2.3.1.5) to follow the production of acetyl-CoA has been standardized. Activity was proportional to time and protein. It depended completely on added pyruvate, CoA, NAD, and MgCI2, and partially on thiamine pyrophosphate, Triton X-100, and a sulfhydryl compound. The activities are the highest in the literature for brain PDHC (50 nmol/min/mg protein) and equal the maximum recorded rates of pyruvate flux for brain in vivo . Activities as low as 0.6 nmol/min could be measured. Use of ArAT of different purities (1–2-fold and 11–%-fold) allowed convenient measurement of total PDHC (ArAT-I) and of the active form of PDHC (ArAT-II). The proportion of PDHC in the active form was 50% in mouse brain, 30% in rat brain, and 10% in mouse liver. Total PDHC activity was unchanged postmortem during storage of mouse brain in situ at +4°C or at -20°C for 3 days or at +20°C for 24 h. The relative specific activity of PDHC in cytoplasmic or synaptoplasmic fractions was less than that of two other mitochondrial enzymes, fumarase (EC 4.2.1.2) and monoamine oxidase (EC 1.4.3.4), which argues strongly against the hypothesis of a cytoplasmic PDHC in cholinergic nerve endings.  相似文献   

5.
An impairment of mitochondrial functions as a result of Ca-loading may be one of the significant events that lead to neuronal death after an ischemic insult. To assess the metabolic consequences of excess Ca on brain mitochondria, pyruvate oxidation was studied in isolated cerebrocortical mitochondria loaded with Ca in vitro. The flux of pyruvate dehydrogenase complex (PDHC) ([1-14C]pyruvate decarboxylation) was inhibited as the mitochondria accumulated excess Ca under the conditions tested: the inhibition in state 3 (i.e., in the presence of added ADP) was greater than in state 4 (i.e., in the absence of added adenine nucleotides). In state 4, the inhibition of the PDHC flux was accompanied by a similar reduction of the in situ activity of PDHC, indicating a change in PDHC phosphorylation. In state 3, the inhibition of the PDHC flux was greater than the corresponding decrease of the in situ PDHC activity. Thus, mechanisms other than the phosphorylation of PDHC might also contribute to the inhibition of pyruvate oxidation. Measurement of PDHC enzymatic activity in vitro indicated that PDHC, similar to -ketoglutarate dehydrogenase complex, was inhibited by millimolar levels of Ca. This observation suggests that PDHC may also be inhibited non-covalently in Ca-loaded mitochondria in a manner similar to that of -ketoglutarate dehydrogenase complex.  相似文献   

6.
This study investigated altered pyruvate metabolism after prolonged oral arsenic exposure. Male rats were given access to deionized drinking water containing 0, 40 or 85 ppm sodium arsenate (As5+) for 3 weeks. Respiration studies with mitochondria isolated from treated animals indicated decreased state 3 respiration (with ADP) and decreased respiratory control ratios (RCR) for pyruvate/malate-mediated respiration, but not for succinate-mediated respiration, as compared to control respiration values. In addition, pyruvate dehydrogenase activity was measured, in both liver and intestine, before and after Mg-activation in vitro. After 3 weeks, the effects of arsenic at the highest dose level were pronounced on the basal pyruvate dehydrogenase activity (before activation) as well as the total pyruvate dehydrogenase (after activation). The inhibition of pyruvate dehydrogenase activity both before and after Mg-activation suggests an arsenic effect on mitochondrial pyruvate metabolism which, in part, involves inhibition of pyruvate decarboxylase. Evidence is also presented which may indicate an arsenic effect on the kinase and/or phosphatase which regulate pyruvate dehydrogenase activity.  相似文献   

7.
The relation between the activation (phosphorylation) state of pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12, and EC 1.6.4.3) and the rate of pyruvate oxidation has been examined in isolated, metabolically active, and tightly coupled mitochondria from rat cerebral cortex. With pyruvate and malate as the substrates, the activation state of PDHC decreased on addition of ADP, while the rates of oxygen uptake and 14CO2 formation from [1-14C]pyruvate increased. The lack of correlation between the activation state of PDHC and rate of pyruvate oxidation was seen in media containing 5, 30, or 100 mM KCl. Both the activation state of PDHC and pyruvate oxidation increased, however, when KCl was increased from 5 to 100 mM. Although the PDHC is inactivated by an ATP-dependent kinase (EC 2.7.1.99), direct measurement of ATP and ADP failed to show a consistent relationship between the activation state of PDHC and either ATP levels or ATP/ADP ratios. Comparison of the activation state of PDHC in uncoupled or oligomycin-treated mitochondria also failed to correlate PDHC activation state to adenine nucleotides. In brain mitochondria, unlike those from other tissues, the activation state of PDHC does not seem to be related clearly to the rate of pyruvate oxidation, or to the mitochondrial adenylate energy charge.  相似文献   

8.
The activity of pyruvate dehydrogenase in extracts of pig mesenteric lymphocytes was measured under different preincubation conditions. The mitogens concanavalin A and ionophore A23187 both increased pyruvate dehydrogenase activity. In both cases activation required extracellular Ca2+. Digitonin-permeabilized cells required 0.5 microM free Ca2+ for half-maximal activation of pyruvate dehydrogenase. The stimulation by concanavalin A in intact cells was probably not due to changes in effectors of pyruvate dehydrogenase kinase. This evidence suggests that activation of pyruvate dehydrogenase is by Ca2+ activation of pyruvate dehydrogenase phosphatase and supports the view that the cytoplasmic free [Ca2+] rises to something less than 1 microM on stimulation with mitogens.  相似文献   

9.
Pigeon liver pyruvate carboxylase (pyruvate: CO2 ligase (ADP forming), EC 6.4.1.1) shows allosteric properties similar to those of chicken or rat liver enzyme. Kinetic methods have been used to determine the effect of Ca2+ on this enzyme. The Ca2+ activation effect is absolutely dependent on the Mg2+ concentration; in the absence of Mg2+, pyruvate carboxylase has no catalytic activity. Furthermore, Ca2+ cannot replace Mg2+ and also shows a paradoxical effect on the liver enzyme activity. It is an activator at low pyruvate or Mg2+ concentrations; at increased pyruvate concentrations, however, it becomes an inhibitor. At low levels of ATP a pronounced activation of pigeon liver pyruvate carboxylase by Ca2+ has been demonstrated. The results of this communication demonstrate pigeon liver pyruvate carboxylase to be different from pyruvate carboxylase from other sources.  相似文献   

10.
A method is described to measure directly in rat brain the activity of pyruvate dehydrogenase kinase (PDHa kinase; EC 2.7.1.99), which catalyzes the inactivation of pyruvate dehydrogenase complex (PDHC, EC 1.2.4.1, EC 2.3.1.12, and EC 1.6.4.3). The activity showed the expected dependence on added ATP and divalent cation, and the expected inhibition by dichloroacetate, pyruvate, and thiamin pyrophosphate. These results, and the properties of pyruvate dehydrogenase phosphate phosphatase (EC 3.1.3.43), indicate that the mechanisms of control of phosphorylation of PDHC seem qualitatively similar in brain to those in other tissues. Regionally, PDHa kinase is more active in cerebral cortex and hippocampus, and less active in hypothalamus, pons and medulla, and olfactory bulbs. Indeed, the PDHa kinase activity in olfactory bulbs is uniquely low, and is more sensitive to inhibition by pyruvate and dichloroacetate than that in the cerebral cortex. Thus, there are significant quantitative differences in the enzymatic apparatus for controlling PDHC activity in different parts of the brain.  相似文献   

11.
Isolated mitochondria of pigeon and guinea pig liver were subjected to zonal centrifugation. With pigeon liver mitochondria there was uniform distribution of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, aspartate aminotransferase and glutamate dehydrogenase activities. Guinea pig liver mitochondria demonstrated two pyruvate carboxylase and phosphoenolpyruvate carboxykinase maxima but only one maximum with aspartate aminotransferase, malate dehydrogenase and glutamate dehydrogenase. Mitochondrial enzyme levels in rat, pigeon and guinea pig indicate different roles of certain gluconeogenic enzymes in the transport of carbon and hydrogen in and out of mitochondria.  相似文献   

12.
A method for measuring the activity of the pyruvate dehydrogenase complex (PDC) by coupling acetyl-CoA production to acetylation of a fluorescent dye is described. Acetylation of cresyl violet acetate by pigeon liver acetyltransferase results in a shift of its fluorescence spectrum from lambda ex max = 575, lambda em max = 620 nm to lambda ex max = 475, lambda em max = 575 nm. The rate of appearance of acetylated dye was followed fluorometrically and was proportional to PDC activity in extracts of cultured human fibroblasts. The assay showed appropriate substrate and cofactor dependence and had a working range between 0.04 and 70 munits. It is 10 times more sensitive than the spectrophotometric assay on which it is based (working range 0.4-31 munits) and is equally convenient. Unactivated PDC activity in fibroblast extracts was 0.75 (0.60-0.92) munits/mg protein (mean and range for six cell lines).  相似文献   

13.
Succinyl-CoA synthetase and the alpha-subunit of pyruvate dehydrogenase are phosphorylated after incubation of mitochondria from brain, heart, and liver with [gamma-32P]ATP. Dichloroacetate, a known specific inhibitor for pyruvate dehydrogenase kinase, inhibits not only the phosphate incorporation into the alpha-subunit of pyruvate dehydrogenase but also the autophosphorylation of succinyl-CoA synthetase. AMP also inhibits the phosphorylation of both proteins. Phosphorylation of the alpha-subunit of pyruvate dehydrogenase in liver mitochondria is significantly lower than in mitochondria from other tissues.  相似文献   

14.
Studies were performed to elucidate factors involved in the regulation of pyruvate dehydrogenase activity in rat brain synaptosomes during membrane depolarization. Addition of 24 mM-KCl to synaptosomes resulted in increases in rates of O2 consumption (90%) and [1-(14)C]pyruvate decarboxylation (85%) and in the active/total ratio of extractable pyruvate dehydrogenase (90--100%) within 10 s. Neither pyruvate (10 mM) nor dichloroacetate (10 mM) affected the activation state of the enzyme complex. Also, the activation state of pyruvate dehydrogenase was unaffected by addition of 1 mM-octanoate, L-(--)-carnitine, 3-hydroxybutyrate, glutamate, citrate, lactate, L-malate, acetate, acetaldehyde or ethanol. Removal of Ca2+ by using EGTA lowered the active/total ratio to about 70%, although the rate of O2 consumption and pyruvate decarboxylation was unaffected. Rates of pyruvate decarboxylation in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence and absence of NaF and EGTA demonstrated a linear correlation with changes in the activity of the enzyme complex. This observation indicated that a change in the activation state of pyruvate dehydrogenase from 90 to 100% active could result in a 27% increase in the rate of pyruvate decarboxylation. It is suggested that the pyruvate dehydrogenase complex is an important site for the regulation of substrate utilization in rat brain synaptosomes. Further, the phosphorylation/dephosphorylation system and direct feedback-inhibitory effects on the enzyme complex both play a significant role in rapidly adapting pyruvate decarboxylation to changes in the requirements for mitochondrial energy production.  相似文献   

15.
1. The effects of phenylpyruvate, a metabolite produced in phenylketonuria, on the pyruvate dehydrogenase-complex activity were investigated in rat brain mitochondria. 2. Pyruvate dehydrogenase activity was measured by two methods, one measuring the release of 14CO2 from [1-14C]pyruvate and the other measuring the acetyl-CoA formed by means of the coupling enzyme, pigeon liver arylamine acetyltransferase (EC 2.3.1.5). In neither case was there significant inhibition of the pyruvate dehydrogenase complex by phenylpyruvate at concentrations below 2mm. 3. However, phenylpyruvate acted as a classical competitive inhibitor of the coupling enzyme arylamine acetyltransferase, with a Ki of 100μm. 4. It was concluded that the inhibition of pyruvate dehydrogenase by phenylpyruvate is unlikely to be a primary enzyme defect in phenylketonuria.  相似文献   

16.
1. The effects of phenylpyruvate, a metabolite produced in phenylketonuria, on the pyruvate dehydrogenase-complex activity were investigated in rat brain mitochondria. 2. Pyruvate dehydrogenase activity was measured by two methods, one measuring the release of (14)CO(2) from [1-(14)C]pyruvate and the other measuring the acetyl-CoA formed by means of the coupling enzyme, pigeon liver arylamine acetyltransferase (EC 2.3.1.5). In neither case was there significant inhibition of the pyruvate dehydrogenase complex by phenylpyruvate at concentrations below 2mm. 3. However, phenylpyruvate acted as a classical competitive inhibitor of the coupling enzyme arylamine acetyltransferase, with a K(i) of 100mum. 4. It was concluded that the inhibition of pyruvate dehydrogenase by phenylpyruvate is unlikely to be a primary enzyme defect in phenylketonuria.  相似文献   

17.
The total activity of pyruvate dehydrogenase in mitochondria isolated from rat brain and liver was 53.5 and 14.2nmol/min per mg of protein respectively. Pyruvate dehydrogenase in liver mitochondria incubated for 4 min at 37 degrees C with no additions was 30% in the active form and this activity increased with longer incubations until it was completely in the active form after 20 min. Brain mitochondrial pyruvate dehydrogenase activity was initially high and did not increase with addition of Mg2+ plus Ca2+ or partially purified pyruvate dehydrogenase phosphatase or with longer incubations. The proportion of pyruvate dehydrogenase in the active form in both brain and liver mitochondria changed inversely with changes in mitochondrial energy charge, whereas total pyruvate dehydrogenase did not change. The chelators citrate, isocitrate, EDTA, ethanedioxybis(ethylamine)tetra-acetic acid and Ruthenium Red each lowered pyruvate dehydrogenase activity in brain mitochondria, but only citrate and isocitrate did so in liver mitochondria. These chelators did not affect the energy charge of the mitochondria. Mg2+ plus Ca2+ reversed the pyruvate dehydrogenase inactivation in liver, but not brain, mitochondria. The regulation of the activation-inactivation of pyruvate dehydrogenase in mitochondria from rat brain and liver with respect to energy charge is similar and may be at least partially regulated by this parameter, and the effects of chelators differ in the two types of mitochondria.  相似文献   

18.
THE CONTROL OF PYRUVATE DEHYDROGENASE IN ISOLATED BRAIN MITOCHONDRIA   总被引:13,自引:11,他引:2  
Abstract— The activity and control of the pyruvate dehydrogenase complex in isolated rat brain mitochondria has been studied. The activity of this complex in mitochondria as isolated from normal fed rats was 78 ± 10nmol.min−1 mg mitochondrial protein−1 (n = 18) which represented 70% of the total pyruvate dehydrogenase activity. The pyruvate dehydrogenase in isolated brain mitochondria could be inactivated by incubation in the presence of ATP, oligomycin and NaF. The rate of inactivation was dependent upon the added ATP concentration but inactivation below approx 30% of the total pyruvate dehydrogenase activity could not be achieved. The inactivation of pyruvate dehydrogenase in brain mitochondria was inhibited by pre-incubation with pyruvate. Reactivation of inactivated pyruvate dehydrogenase in rat brain mitochondria was incomplete in the incubation medium unless 10mM-Mg2++ 1 mM-Ca2+ were added; NaF, however, prevented any reactivation (Fig. 4). It is concluded that the pyruvate dehydrogenase complex in rat brain mitochondria is controlled in a manner similar to that in other tissues, and that pyruvate protection of pyruvate dehydrogenase activity may be important in maintaining brain energy metabolism.  相似文献   

19.
A comparative study of the pyruvate dehydrogenase complex and its pyruvate dehydrogenase component was carried out by using the circular dichroism method. It was found that the spectral properties of the pyruvate dehydrogenase complex are determined by those of its first component: i) the spectrum of the thiamine pyrophosphate-free pyruvate dehydrogenase complex displayed the main characteristics of the pyruvate dehydrogenase component; ii) the appearance of the charge transfer complex band during thiamine pyrophosphate saturation was revealed for the both proteins; iii) in both cases the charge transfer complex band disappeared after the interaction of the holoform with pyruvate and reappeared after the addition of dithiothreitol used as a deacetylating reagent. Coenzyme A in the same reaction selectively deacetylated the pyruvate dehydrogenase complex (but not its pyruvate dehydrogenase component). The spectral dynamics of pyruvate dehydrogenase reflects the functional changes in the enzyme active centers during the catalytic act. The similarity of the spectral behaviour of pyruvate dehydrogenase within the complex structure and in the isolated state provides support for the earlier proposed mechanism of the pyruvate dehydrogenase action and ensures a methodological basis for its direct investigation within the complex structure.  相似文献   

20.
In mammalian tissues, two types of regulation of the pyruvate dehydrogenase complex have been described: end product inhibition by acetyl CoA and NADH: and the interconversion of an inactive phosphorylated form and an active nonphosphorylated form by an ATP requiring kinase and a specific phosphatase. This article is largely concerned with the latter type of regulation of the complex in adipose tissue by insulin (and other hormones) and in heart muscle by lipid fuels. Effectors of the two interconverting enzymes include pyruvate and ADP which inhibit the kinase, acetoin which activates the kinase and Ca2+ and Mg2+ which both activate the phosphatase and inhibit the kinase. Evidence is presented that all components of the pyruvate dehydrogenase complex including the phosphatase and kinase are located within the inner mitochondrial membrane. Direct measurements of the matrix concentration of substrates and effectors is not possible by techniques presently available. This is the key problem in the identification of the mechansims involved in the alterations in pyruvate dehydrogenase activity observed in adipose tissue and muscle. A number of indirect approaches have been used and these are reviewed. Most hopeful is the recent finding in this laboratory that in both adipose tissue and heart muscle, differences in activity of pyruvate dehydrogenase in the intact tissue persist during preparation and subsequent incubation of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号