首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The eukaryotic subtilisin-like endoprotease furin is found predominantly in the trans-Golgi network (TGN) and cycles between this compartment, the cell surface, and the endosomes. There is experimental evidence for endocytosis from the plasma membrane and transport from endosomes to the TGN, but direct exit from the TGN to endosomes via clathrin-coated vesicles has only been discussed but not directly shown so far. Here we present data showing that expression of furin promotes the first step of clathrin-coat assembly at the TGN, the recruitment of the Golgi-specific assembly protein AP-1 on Golgi membranes. Further, we report that furin indeed is present in isolated clathrin-coated vesicles. Packaging into clathrin-coated vesicles requires signal components in the furin cytoplasmic domain which can be recognized by AP-1 assembly proteins. We found that besides depending on the phosphorylation state of a casein kinase II site, interaction of the furin tail with AP-1 and its mu1subunit is mediated by a tyrosine motif and to less extent by a leucine-isoleucine signal, whereas a monophenylalanine motif is only involved in binding to the intact AP-1 complex. This study implies that high affinity interaction of AP-1 or mu1 with the cytoplasmic tail of furin needs a complex interplay of signal components rather than one distinct signal.  相似文献   

2.
A crucial step in lysosomal biogenesis is catalyzed by "uncovering" enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: (488)YHPL and C-terminal (511)NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.  相似文献   

3.
Proprotein convertase 7 (PC7) is a member of the subtilisin-like proprotein convertase family, which is involved in the endoproteolysis of a variety of precursor proteins. Under steady state conditions, PC7 is mainly localized in the trans-Golgi network, but a small fraction is found at the cell surface. So far, no sorting signals for membrane trafficking have been identified in PC7. In this study, we have examined the internalization of PC7 from the plasma membrane. Our results show that internalization of PC7 is mediated by clathrin-coated vesicles. After inhibition of clathrin-mediated endocytosis using hypertonic conditions or the small molecule inhibitor, Pitstop 2, PC7 accumulated at the plasma membrane. Furthermore, PC7 was present in isolated clathrin-coated vesicles. To determine the internalization motif, constructs were generated in which parts of the N and C terminus of the cytoplasmic tail of PC7 were deleted, and chimeric proteins were constructed consisting of the luminal and transmembrane domains of Tac (CD25) and parts of the cytoplasmic domain of PC7. Antibody uptake experiments as well as surface biotinylation experiments demonstrated that the region between Ala(713) and Cys(726) in the cytoplasmic domain of PC7 is essential and sufficient for the internalization of PC7 but not for trans-Golgi network localization. Individual amino acids in this region were substituted with alanine, which identified Pro, Leu, and Cys as the essential amino acids. In conclusion, internalization of PC7 depends on a short transferable sequence in the cytoplasmic tail, which contains the three crucial amino acids PLC.  相似文献   

4.
We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at the trans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K(+) depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked.  相似文献   

5.
M S Robinson  T E Kreis 《Cell》1992,69(1):129-138
Brefeldin A (BFA) causes a rapid redistribution of coat proteins (e.g., gamma-adaptin) associated with the clathrin-coated vesicles that bud from the trans-Golgi network (TGN), while the clathrin-coated vesicles that bud from the plasma membrane are unaffected. gamma-Adaptin redistributes with the same kinetics as beta-COP, a coat protein associated with the non-clathrin-coated vesicles that bud from the Golgi complex. Upon removal of BFA, however, gamma-adaptin recovers its perinuclear distribution more rapidly. Redistribution of both proteins can be prevented by pretreating cells with AlF4-. Recruitment of adaptors from the cytosol onto the TGN membrane has been reconstituted in a permeabilized cell system and is increased by addition of GTP gamma S and blocked by addition of BFA. These results suggest a role for G proteins in the control of the clathrin-coated vesicle cycle at the TGN and further extend the similarities between clathrin-coated vesicles and non-clathrin-coated vesicles.  相似文献   

6.
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.  相似文献   

7.
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.  相似文献   

8.
Targeting of MHC class II molecules to the endocytic compartment where they encounter processed antigen is determined by the invariant chain (Ii). By analysis of Ii-transferrin receptor (TR) chimera trafficking, we have identified sorting signals in the Ii cytoplasmic tail and transmembrane region that mediate this process. Two non-tyrosine-based sorting signals in the Ii cytoplasmic tail were identified that mediate localization to plasma membrane clathrin-coated pits and promote rapid endocytosis. Leu7 and Ile8 were required for the activity of the signal most distal to the cell membrane whereas Pro15 Met16 Leu17 were important for the membrane-proximal signal. The same or overlapping non- tyrosine-based sorting signals are essential for delivery of Ii-TR chimeras, either by an intracellular route or via the plasma membrane, to an endocytic compartment where they are rapidly degraded. The Ii transmembrane region is also required for efficient delivery to this endocytic processing compartment and contains a signal distinct from the Ii cytoplasmic tail. More than 80% of the Ii-TR chimera containing the Ii cytoplasmic tail and transmembrane region is delivered directly to the endocytic pathway by an intracellular route, implying that the Ii sorting signals are efficiently recognized by sorting machinery located in the trans-Golgi.  相似文献   

9.
To analyze the interaction of sorting signals with clathrin-associated adaptor complexes, we developed an in vitro assay based on surface plasmon resonance analysis. This method monitors the binding of purified adaptors to immobilized oligopeptides in real time and determines binding kinetics and affinities. A peptide corresponding to the cytoplasmic domain of wild-type influenza hemagglutinin, an apical membrane protein that is not endocytosed, did not significantly bind adaptor complexes. However, peptide sequences containing a tyrosine residue that has previously been shown to induce endocytosis and basolateral sorting were specifically recognized by adaptor complexes. The in vitro rates of adaptor association with these peptides correlated with the internalization rates of the corresponding hemagglutinin variants in vivo. Binding was observed both for purified AP-2 adaptors of the plasma membrane and for AP-1 adaptors of the Golgi, with similar apparent equilibrium dissociation constants in the range 10(-7)-10(-6) M. Adaptor binding was also demonstrated for a sequence containing a C-terminal di-leucine sequence, the second major motif of endocytosis/basolateral sorting signals. These results confirm the concept that interaction of cytoplasmic signals with plasma membrane adaptors determines the endocytosis rate of membrane proteins, and suggest the model that clathrin-coated vesicles of the trans-Golgi network are involved in basolateral sorting.  相似文献   

10.
Lamp1 is a type I transmembrane glycoprotein that is localized primarily in lysosomes and late endosomes. Newly synthesized molecules are mostly transported from the trans-Golgi network directly to endosomes and then to lysosomes. A minor pathway involves transport via the plasma membrane. The 11-amino acid cytoplasmic tail of lamp1 contains a tyrosine-based motif that has been previously shown to mediate sorting in the trans-Golgi network and rapid internalization at the plasma membrane. We studied whether this motif also mediates sorting in endosomes. We found that mutant forms of lamp1 in which all the amino acids of the cytoplasmic tail were modified except for the RKR membrane anchor and the YXXI sorting motif still localized to dense lysosomes, indicating that the YXXI motif is sufficient to confer proper intracellular targeting. However, when the spacing of the YXXI motif relative to the membrane was changed by deleting one amino acid or adding five amino acids, lysosomal targeting was almost completely abolished. Kinetic studies showed that these mutants were trapped in a recycling pathway, involving trafficking between the plasma membrane and early endocytic compartments. These findings indicate that the YXXI signal of lamp1 is recognized at several sorting sites, including the trans-Golgi network, the plasma membrane, and the early/sorting endosomes. Small changes in the spacing of this motif relative to the membrane dramatically impair sorting in the early/sorting endosomes but have only a modest effect on internalization at the plasma membrane. The spacing of sorting signals relative to the membrane may prove to be an important determinant in the functioning of these signals.  相似文献   

11.
The Us9 protein is a phosphorylated membrane protein present in the lipid envelope of pseudorabies virus (PRV) particles in a unique tail-anchored type II membrane topology. In this report, we demonstrate that the steady-state residence of the Us9 protein is in a cellular compartment in or near the trans-Golgi network (TGN). Through internalization assays with an enhanced green fluorescent protein epitope-tagged Us9 protein, we demonstrate that the maintenance of Us9 to the TGN region is a dynamic process involving retrieval of molecules from the cell surface. Deletion analysis of the cytoplasmic tail reveals that an acidic cluster containing putative phosphorylation sites is necessary for the recycling of Us9 from the plasma membrane. The absence of this cluster results in the relocalization of Us9 to the plasma membrane due to a defect in endocytosis. The acidic motif, however, does not contain signals needed to direct the incorporation of Us9 into viral envelopes. In this study, we also investigate the role of a dileucine endocytosis signal in the Us9 cytoplasmic tail in the recycling and retention of Us9 to the TGN region. Site-directed mutagenesis of the dileucine motif results in an increase in Us9 plasma membrane staining and a partial internalization defect.  相似文献   

12.
Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface.  相似文献   

13.
Kim DH  Eu YJ  Yoo CM  Kim YW  Pih KT  Jin JB  Kim SJ  Stenmark H  Hwang I 《The Plant cell》2001,13(2):287-301
Very limited information is available on the role of phosphatidylinositol 3-phosphate (PI[3]P) in vesicle trafficking in plant cells. To investigate the role of PI(3)P during the vesicle trafficking in plant cells, we exploited the PI(3)P-specific binding property of the endosome binding domain (EBD) (amino acids 1257 to 1411) of human early endosome antigen 1, which is involved in endosome fusion. When expressed transiently in Arabidopsis protoplasts, a green fluorescent protein (GFP):EBD fusion protein exhibited PI(3)P-dependent localization to various compartments--such as the trans-Golgi network, the prevacuolar compartment, the tonoplasts, and the vesicles in the vacuolar lumen--that varied with time. The internalized GFP:EBD eventually disappeared from the lumen. Deletion experiments revealed that the PI(3)P-dependent localization required the Rab5 binding motif in addition to the zinc finger motif. Overexpression of GFP:EBD inhibited vacuolar trafficking of sporamin but not trafficking of H(+)-ATPase to the plasma membrane. On the basis of these results, we propose that the trafficking of GFP:EBD reflects that of PI(3)P and that PI(3)P synthesized at the trans-Golgi network is transported to the vacuole through the prevacuolar compartment for degradation in plant cells.  相似文献   

14.
The Us9 gene is conserved among most alphaherpesviruses. In pseudorabies virus (PRV), the Us9 protein is a 98-amino-acid, type II membrane protein found in the virion envelope. It localizes to the trans-Golgi network (TGN) region in infected and transfected cells and is maintained in this compartment by endocytosis from the plasma membrane. Viruses with Us9 deleted have no observable defects in tissue culture yet have reduced virulence and restricted spread to retinorecipient neurons in the rodent brain. In this report, we demonstrate that Us9-promoted transneuronal spread in vivo is dependent on a conserved acidic motif previously shown to be essential for the maintenance of Us9 in the TGN region and recycling from the plasma membrane. Mutant viruses with the acidic motif deleted have an anterograde spread defect indistinguishable from that of Us9 null viruses. Transneuronal spread, however, is not dependent on a dileucine endocytosis motif in the Us9 cytoplasmic tail. Through alanine scanning mutagenesis of the acidic motif, we have identified two conserved tyrosine residues that are essential for Us9-mediated spread as well as two serine residues, comprising putative consensus casein kinase II sites, that modulate the rate of PRV transneuronal spread in vivo.  相似文献   

15.
K Bos  C Wraight    K K Stanley 《The EMBO journal》1993,12(5):2219-2228
Sorting of proteins destined for different plasma membrane domains, lysosomes and secretory pathways takes place in the trans-Golgi network (TGN). TGN38 is an integral membrane protein found in this intracellular compartment. We show that TGN38 contains an autonomous targeting signal within its cytoplasmic domain which determines its intracellular location. Deletion analysis and site-directed mutagenesis of this domain demonstrate that a tyrosine motif homologous to the internalization signal of surface receptors is necessary and sufficient for correct localization. These findings suggest that TGN38 is maintained in the TGN by retrieval from the plasma membrane and employs a different mechanism for retention from that of the transferase enzymes of the trans-Golgi.  相似文献   

16.
S Hning  J Griffith  H J Geuze    W Hunziker 《The EMBO journal》1996,15(19):5230-5239
Diversion of membrane proteins from the trans-Golgi network (TGN) or the plasma membrane into the endosomal system occurs via clathrin-coated vesicles (CCVs). These sorting events may require the interaction of cytosolic domain signals with clathrin adaptor proteins (APs) at the TGN (AP-1) or the plasma membrane (AP-2). While tyrosine- and di-leucine-based signals in several proteins mediate endocytosis via cell surface CCVs, segregation into Golgi-derived CCVs has so far only been documented for the mannose 6-phosphate receptors, where it is thought to require a casein kinase II phosphorylation site adjacent to a di-leucine motif. Although recently tyrosine-based signals have also been shown to interact with the mu chain of AP-1 in vitro, it is not clear if these signals also bind intact AP-1 adaptors, nor if they can mediate sorting of proteins into AP-1 CCVs. Here we show that the cytosolic domain of the lysosomal membrane glycoprotein lamp-1 binds AP-1 and AP-2. Furthermore, lamp-1 is present in AP-1-positive vesicles and tubules in the trans-region on the Golgi complex. AP-1 binding as well as localization to AP-1 CCVs require the presence of the functional tyrosine-based lysosomal targeting signal of lamp-1. These results indicate that lamp-1 can exit the TGN in CCVs and that tyrosine signals can mediate these sorting events.  相似文献   

17.
Transport between the trans-Golgi network (TGN) and late endosome represents a conserved, clathrin-dependent sorting event that separates lysosomal from secretory cargo molecules and is also required for localization of integral membrane proteins to the TGN. Previously, we reported a cell-free reaction that reconstitutes transport from the yeast TGN to the late endosome/prevacuolar compartment (PVC) and requires the PVC t-SNARE Pep12p. Here, we report that factors required both for formation of clathrin-coated vesicles at the TGN (the Chc1p clathrin heavy chain and the Vps1p dynamin homolog) and for vesicle fusion at the PVC (the Vps21p rab protein and Vps45p SM (Sec1/Munc18) protein) are required for cell-free transport. The marker for TGN-PVC transport, Kex2p, is initially present in a clathrin-containing membrane compartment that is competent for delivery of Kex2p to the PVC. A Kex2p chimera containing the cytosolic tail (C-tail) of the vacuolar protein sorting receptor, Vps10p, is also efficiently transported to the PVC. Antibodies against the Kex2p and Vps10p C-tails selectively block transport of Kex2p and the Kex2-Vps10p chimera. The requirements for factors involved in vesicle formation and fusion, the identification of the donor compartment as a clathrin-containing membrane, and the need for accessibility of C-tail sequences argue that the TGN-PVC transport reaction involves selective incorporation of TGN cargo molecules into clathrin-coated vesicle intermediates. Further biochemical dissection of this reaction should help elucidate the molecular requirements and hierarchy of events in TGN-to-PVC sorting and transport.  相似文献   

18.
We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI- MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.  相似文献   

19.
Constitutive secretory vesicles carrying heparan sulfate proteoglycan (HSPG) were identified in isolated rat hepatocytes by pulse-chase experiments with [35S]sulfate and purified by velocity-controlled sucrose gradient centrifugation followed by equilibrium density centrifugation in Nycodenz. Using this procedure, the vesicles were separated from plasma membranes, Golgi, trans-Golgi network (TGN), ER, endosomes, lysosomes, transcytotic vesicles, and mitochondria. The diameter of these vesicles was approximately 100-200 nm as determined by electron microscopy. A typical coat structure as described for intra- Golgi transport vesicles or clathrin-coated vesicles could not be seen, and the vesicles were not associated with the coat protein beta-COP. Furthermore, the vesicles appear to represent a low density compartment (1.05-1.06 g/ml). Other constitutively secreted proteins (rat serum albumin, apolipoprotein E, and fibrinogen) could not be detected in purified HSPG-carrying vesicles, but banded in the denser fractions of the Nycodenz gradient. Moreover, during pulse-chase labeling with [35S]methionine, labeled albumin did not appear in the post-TGN vesicle fraction carrying HSPGs. These findings indicate sorting of HSPGs and albumin into different types of constitutive secretory vesicles in hepatocytes. Two proteins were found to be tightly associated with the membranes of the HSPG carrying vesicles: a member of the ADP ribosylation factor family of small guanine nucleotide-binding proteins and an unknown 14-kD peripheral membrane protein (VAPP14). Concerning the secretory pathway, we conclude from these results that ADP ribosylation factor proteins are not only involved in vesicular transport from the ER via the Golgi to the TGN, but also in vesicular transport from the TGN to the plasma membrane.  相似文献   

20.
BP-80 is a type I integral membrane protein abundant in pea (Pisum sativum) clathrin-coated vesicles (CCVs) that binds with high affinity to vacuole-targeting determinants containing asparagine-proline-isoleucine-arginine. Here we present results from cDNA cloning and studies of its intracellular localization. Its sequence and sequences of homologs from Arabidopsis, rice (Oryza sativa), and maize (Zea mays) define a novel family of proteins unique to plants that is highly conserved in both monocotyledons and dicotyledons. The BP-80 protein is present in dilated ends of Golgi cisternae and in "prevacuoles," which are small vacuoles separate from but capable of fusing with lytic vacuoles. Its cytoplasmic tail contains a Tyr-X-X-hydrophobic residue motif associated with transmembrane proteins incorporated into CCVs. When transiently expressed in tobacco (Nicotiana tabacum) suspension-culture protoplasts, a truncated form lacking transmembrane and cytoplasmic domains was secreted. These results, coupled with previous studies of ligand-binding specificity and pH dependence, strongly support our hypothesis that BP-80 is a vacuolar sorting receptor that trafficks in CCVs between Golgi and a newly described prevacuolar compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号