首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Bungarotoxin (alpha Bgt) is a postsynaptic neurotoxin which blocks cholinergic transmission at the neuromuscular junction by binding tightly to the acetylcholine receptor (AcChR). The number of methylation sites in alpha Bgt has been shown to decrease significantly upon binding of the toxin to the AcChR [Soler, G., Farach, M. C., Farach, H. A., Mattingly, J. R., & Martinez-Carrion, M. (1983) Arch. Biochem. Biophys. 225, 872-878]. We have compared the chemical reactivities of amino groups in free and AcChR-bound alpha Bgt in an attempt to identify the regions in the alpha Bgt molecule that become masked upon binding to the AcChR. Free alpha Bgt and AcChR-bound alpha Bgt were reductively methylated with formaldehyde and sodium cyanoborohydride, and the rate of modification of each one of the available amino groups was followed by cleaving the methylated toxin with V8 protease and resolving the resulting peptides by reversed-phase, high-performance liquid chromatography. Under conditions of limited reagent availability, five of seven amino groups in free alpha Bgt reacted readily, whereas two other amino groups, probably those corresponding to Lys-51 and Lys-70, displayed lower reactivity. Upon binding to the AcChR, the rates of reductive methylation of residues Ile-1, Lys-26, and Lys-38 were considerably reduced (although to differing extents). The degree of protection was most pronounced for Lys-26. The rates of methylation of the amino groups in all other positions remained unchanged. These results allow further definition of the minimal binding surface of a representative neurotoxin.  相似文献   

2.
The structural change induced by binding of mild detergents to cytoplasmic calf brain tubulin and the effects on the functional properties of this protein have been characterized. Massive binding of octyl glucoside or deoxycholate monomers induces circular dichroism changes indicating a partial alpha-helix to disordered structure transition of tubulin. The protein also becomes more accessible to controlled proteolysis by trypsin, thermolysin, or V8 protease. This is consistent with the looser protein structure proposed in previous binding and hydrodynamic studies [Andreu, J. M., & Mu?oz, J. A. (1986) Biochemistry (preceding paper in this issue)]. Micelles of octyl glucoside and deoxycholate bind colchicine and its analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC). This impedes the determination of colchicine binding in the presence of detergents. Both detergents cause a reduction in the number of tubulin equilibrium binding sites for the colchicine site probe MTC. Deoxycholate monomers bind poorly to the tubulin-colchicine complex, but deoxycholate above the critical micelle concentration effectively dissociates the complex. Microtubule assembly in glycerol-containing buffer is inhibited by octyl glucoside, which raises the critical protein concentration. Low concentrations of deoxycholate enhance tubulin polymerization, allowing it to proceed without glycerol. The polymers formed are microtubules, pairwise associated open microtubular sheets, and macrotubules possibly generated by helical folding of the sheets, as indicated by the optical diffraction patterns. Saturation of tubulin with octyl glucoside, followed by full dissociation of the detergent, allowed the recovery of binding to the colchicine site and microtubule assembly, indicating the reversibility of the protein structural change.  相似文献   

3.
The main product of the reaction of fluorescein isothiocyanate (FITC) and bungarotoxin (Bgt) under near stoichiometric conditions is a monofluorescein derivative preferentially labeled at Lys 26, a highly conserved residue known to be involved in the binding (McDaniel, C. S., Manshouri, T., and Atassi, M. Z. (1987)J. Prot. Chem. 6, 455–461; Garcia-Borron, J. C., Bieber, A. L., and Martinez-Carrion, M. (1987)Biochemistry 26, 4295–4303) of postsynaptic neurotoxins specific for the nicotinic acetylcholine receptor (AcChR). The fluorescently labeled toxin retains a high affinity for the AcChR, and an unaltered specificity. Binding of FITC-Bgt to AcChR results in a significant decrease in the fluorescence intensity of the probe. This AcChR-mediated quenching of FITC-Bgt fluorescence allows for a continuous monitoring of the binding process. The quenching of free and bound FITC-Bgt by charged and neutral quenchers shows few fluorophore accessibility changes as induced by the toxin-bound state. The results are consistent with a model in which the positively charged concave surface of the toxin interacts with a negatively charged complementary surface in the receptor molecule.  相似文献   

4.
M Gavish 《Life sciences》1983,33(15):1479-1483
Benzodiazepine receptors were solubilized from calf brain cortex by the ionic detergent deoxycholate and by the nonionic detergent Triton X-100. Approximately 90% of the soluble benzodiazepine receptors of both preparations were heat inactivated within 30 min at 55 degrees C. 100 microM of gamma-aminobutyric acid (GABA) protected 80% of Triton X-100 solubilized benzodiazepine receptors and 56% of the deoxycholate soluble benzodiazepine receptors from heat inactivation. Time course of heat inactivation showed that the deoxycholate soluble receptors are more sensitive to heat than the Triton X-100 soluble receptors.  相似文献   

5.
α-Bungarotoxin (α-Bgt) is a potent postsynaptic neurotoxin which blocks neurotransmission by binding very tightly to the acetylcholine-receptor (AcChR) protein. We have previously shown (P. Calvo-Fernandez, and M. Martinez-Carrion (1981) Arch. Biochem. Biophys., 208, 154–159) that α-Bgt free in its native solution conformation incorporates 12 methyl groups when reductively methylated using formaldehyde and sodium cyanoborohydride. We now show that when the α-Bgt molecule is bound to the AcChR contained in native membranes prepared from Torpedo californica electroplax, the number of accessible methylation sites is significantly reduced. This favors a model of α-Bgt-AcChR interaction involving significant numbers of lysyl moieties distributed over a reasonably large surface of the toxin molecule. In addition, this paper presents a novel procedure for the rapid and nondestructive dissociation of the toxin-AcChR membrane complex which takes advantage of the thermal instability of the complex.  相似文献   

6.
In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR (Conti-Tronconi & Raftery, 1986). We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The stability of the sodium- and potassium-activated adenosinetriphosphatase (Na,K-ATPase) of the electric eel, Electrophorus electricus, was studied in five detergents in an effort to establish conditions for reconstitution of this membrane protein into defined phospholipids. The Na,K-ATPase activity of purified electric organ membranes as well as the ATPase is stable for at least 1 month of storage at 0 degrees C in the absence of detergents. At low concentrations of detergents, the enzyme is also stable for several days, but irreversible inactivation occurs rapidly as the detergent concentration is further increased. This inactivation begins at well-defined threshold concentrations for each detergent, and these concentrations generally occur in the order of the detergent critical micelle concentrations. Increasing the concentration of the electric organ membranes causes a linear increase in the inactivation threshold concentrations of Lubrol WX, deoxycholate, and cholate. The onset of inactivation evidently occurs when the mole fraction of detergent associated with the membrane lipids reaches a critical value in the narrow range of 0.2-0.4, in contrast to the large differences in the bulk concentrations of these detergents. The eel Na,K-ATPase is more sensitive to detergents than the sheep kidney enzyme.  相似文献   

8.
Thermal perturbation techniques have been used to probe structural alteration of the nicotinic acetylcholine receptor as a function of perturbations of its native membrane environment. Differential scanning calorimetry and a technique involving heat inactivation of the alpha-bungarotoxin-binding sites on the receptor protein reveal that there is a profound destabilization of the acetylcholine receptor structure when receptor-containing membranes are exposed to phospholipase A2. The characteristic calorimetric transition assigned to irreversible denaturation of the receptor protein and the heat inactivation profile of alpha-bungarotoxin-binding sites are shifted to lower temperatures by approx. 7 and 5 C degrees, respectively, upon exposure to phospholipase A2 at a phospholipase/neurotoxin binding site molar ratio of about 1:100. The effects of phospholipase A2 on receptor structure can be (i) reversed by using bovine serum albumin as a scavenger of phospholipase hydrolysis products of membrane phospholipids, and (ii) stimulated by incorporation into the membranes of free, polyunsaturated fatty acids. In particular, linolenic acid (18:3(n-3] causes detectable destabilization of the alpha-bungarotoxin binding sites on the receptor at free fatty acid/receptor molar ratios as low as 10:1. Furthermore, alteration of receptor structure by added phospholipase occurs very rapidly, which is consistent with the observation of rapid in situ phospholipase A2 hydrolysis of membrane phospholipids, particularly highly unsaturated phosphatidylethanolamine and phosphatidylserine. Based on previously published data on the inhibition of acetylcholine receptor cation-gating activity caused by the presence of either phospholipase A2 or free fatty acids (Andreasen T.J. and McNamee M.G. (1980) Biochemistry 19, 4719), we interpret our data as indicative of a correlation between structural and functional alterations of the membrane-bound acetylcholine receptor induced by phospholipase A2 hydrolysis products.  相似文献   

9.
The interaction of free and immobilized myelin basic protein (MBP) with sodium deoxycholate (DOC) and sodium dodecyl sulfate (NaDodSO4) was studied under a variety of conditions. Free MBP formed insoluble complexes with both detergents. Analysis of the insoluble complexes revealed that the molar ratio of detergent/MBP in the precipitate increased in a systematic fashion with increasing detergent concentration until the complex became soluble. At pH 4.8, equilibrium dialysis studies indicated that approximately 15 mol of NaDodSO4 could bind to the protein without precipitation occurring. Regardless of the surfactant, however, minimum protein solubility occurred when the net charge on the protein-detergent complex was between +18 and -9. Complete equilibrium binding isotherms of both detergents to the protein were obtained by using MBP immobilized on agarose. The bulk of the binding of both detergents was highly cooperative and occurred at or above the critical micelle concentration. At I = 0.1, saturation levels of 2.09 +/- 0.15 g of NaDodSO4/g of protein and 1.03 /+- 0.40 g of DOC/g of protein were obtained. Below pH 7.0 the NaDodSO4 binding isotherms revealed an additional cooperative transition corresponding to the binding of 15-20 mol of NaDodSO4/mol of protein. Affinity chromatography studies indicated that, in the presence of NaDodSO4 (but not in its absence), [125I]MBP interacted with agarose-immobilized histone, lysozyme, and MBP but did not interact with ovalbumin-agarose. These data support a model in which the detergent cross-links and causes precipitation of MBP-anionic detergent complexes. Cross-linking may occur through hydrophobic interaction between detergents electrostatically bound to different MBP molecules.  相似文献   

10.
A mathematical model of erythrocyte lysis by detergents is developed which takes into consideration the kinetics of detergent binding to plasma membrane. Experimentally obtained sigmoidal kinetic and concentration curves of hemolysis are well described by the model. A comparative study is carried out in terms of the model of hemolytic action for five detergents: Triton X-100, sodium dodecylsulfate, sodium deoxycholate, cetyltrimethylammonium bromide, and cetylpyridinium chloride. The amount of detergent which should be bound to an erythrocyte membrane to induce lysis was found to be roughly the same for all detergents studied. However, detergents vary in their affinity to the membrane. Cetylpyridinium displays the highest affinity (and consequently the highest hemolytic activity), whereas deoxycholate has the least one.  相似文献   

11.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich plasma but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4.10(-6) M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4.10(-5) M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8.10(-4) to 5.10(-3) M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregating agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

12.
The choline homologue 3-[(trimethylammonio)methyl]catechol (TMC) has been synthesized, and the controllable features of its complex oxidation have been examined spectroscopically and correlated with its toxin binding inactivating reactions with the acetylcholine receptor (AcChR) from Torpedo californica electroplax. Affinity-dependent reactions of early intermediates in the oxidation of TMC are suggested to intercede covalently in this inactivation. At pH 7.4, where the oxidative polymerization of catechols proceeds spontaneously, pyrocatechol produced no effect on the toxin binding function of AcChR, whereas comparable concentrations of TMC led to inactivation of half of all available sites. Lower concentrations of TMC converted via oxidation with ceric salts to an in situ mixture of monohydroxylated catechols were shown to be effective in short-term incubations in inactivating approximately half of the toxin binding sites by covalent labeling of the receptor. Mixtures of dihydroxycatechol intermediates, hydroxy-p-quinones, and polymeric products led to nonspecific toxin binding site inactivation of AcChR in excess of half of all available sites. Collectively, the results suggest that both covalent labeling and oxygen reduction product inactivating mechanisms are operative in these model macromolecular site reactions and that catechol-containing affinity reagents may be useful in elucidating the molecular features of sites to which they are directed.  相似文献   

13.
Spiralin could not be solubilized in the absence of detergents, and it was shown by charge-shift crossed immunoelectrophoresis that this protein was capable of binding detergents under nondenaturing conditions. These properties indicate the amphiphilic nature of spiralin, which therefore should be regarded as an intrinsic membrane protein. The efficiency of mild (ionic and neutral) detergents to solubilize spiralin was as follows: deoxycholate greater than lauroyl sarcosinate, cholate, taurocholate, taurodeoxycholate greater than Triton X-100 greater than Brij 58 greater than Tween 20, indicating that mild ionic detergents were more effective than neutral ones. Solubilization of spiralin was quantitative with sodium deoxycholate. It was also shown that although a membrane protein is not extractable by a given detergent from the membrane, this does not necessarily mean that the protein is not soluble in this detergent.  相似文献   

14.
Cholinephosphotransferase (CDPcholine: 1,2-diacylglycerol cholinephosphotransferase, EC 2.7.8.2), which catalyzes the terminal step in phosphatidylcholine synthesis via the CDPcholine pathway, is present in sarcoplasmic reticulum from rabbit skeletal muscle (Cornell, R. and MacLennan, D.H. (1985) Biochim. Biophys. Acta 835, 567-576). The conditions for solubilization and reconstitution of this enzyme were investigated as a preliminary step towards its eventual purification. The activity was not released by treatment of membranes with 1 M KCl, but was solubilized after dissolution of membranes with detergents. Cholinephosphotransferase was inactivated by cholate, deoxycholate, Triton X-100, octylglucoside, Tween-20 or SDS at concentrations which solubilize the membrane. However, the activity could be fully recovered after reconstituting the membrane by adding excess lipid (soybean) and removing detergent by gel filtration, dialysis or by absorption to Bio-Beads. When the membrane was solubilized with octylglucoside or cholate at weight ratios of detergent: membrane protein of at least 10, the activity was irreversibly lost unless stabilizers were added with detergent. The substrate diacylglycerol and glycerol were effective stabilizers.  相似文献   

15.
Insulin receptor activities, i.e., insulin binding and tyrosine kinase activation depend on the lipid environment of the receptor. As detergent may disrupt or interfere with this environment, we investigated the effect of various common detergents on insulin receptor properties. Experiments were carried out (i) on solubilized and partially purified insulin receptor and (ii) on the receptor reconstituted into phosphatidylcholine vesicles. The detergents tested, Triton X-100, octyl-beta-D-glucopyranoside, octyl-beta-D-thioglucopyranoside, 3[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid (Chaps), and Na deoxycholate affected the insulin receptor properties differently when compared with the control receptor in the absence of detergent. On the partially purified insulin receptor, Na deoxycholate inhibited both insulin receptor activities; octyl-beta-D-glucopyranoside and octyl-beta-D-thioglucopyranoside decreased insulin binding and kinase activation as their concentration increased, particularly above their respective critical micellar concentration (CMC). Triton X-100 was the only detergent which allowed an increase of insulin binding and kinase activation throughout the whole range of concentrations assayed. Reconstitution of the receptor into phosphatidylcholine vesicles protected the receptor from the direct effects of the detergents, for both the stimulation observed with Triton X-100 and the inhibition produced by the other detergents. In order to determine the effect of detergents on the oligomeric forms of the soluble insulin receptor, we investigated a new rapid sucrose gradient centrifugation technique. Insulin receptors were detected on the gradient by 125I insulin binding. For low concentrations of detergent, i.e., near the CMC, octylglucoside, Chaps, and Triton X-100 favored the (alpha 2 beta 2)2 oligomeric form of the receptor. Higher concentrations of Triton X-100 did not modify the polymeric state of the receptor. In contrast, octylglucoside and Chaps induced an increase in the sedimentation coefficient of the receptor which appeared as (alpha 2 beta 2)3 and (alpha 2 beta 2)4 forms. These alterations in the oligomerization status of the insulin receptor may explain the deleterious effects observed with both Chaps and octylglucoside at higher concentrations.  相似文献   

16.
GroEL has a greater affinity for the mitochondrial isozyme (mAAT) of aspartate aminotransferase than for its cytosolic counterpart (cAAT) (Mattingly JR Jr, Iriarte A, Martinez-Carrion M, 1995, J Biol Chem 270:1138-1148), two proteins that share a high degree of sequence similarity and an almost identical spatial structure. The effect of detergents on the refolding of these large, dimeric isozymes parallels this difference in behavior. The presence of non-ionic detergents such as Triton X-100 or lubrol at concentrations above their critical micelle concentration (CMC) interferes with reactivation of mAAT unfolded in guanidinium chloride but increases the yield of cAAT refolding at low temperatures. The inhibitory effect of detergents on the reactivation of mAAT decreases progressively as the addition of detergents is delayed after starting the refolding reaction. The rate of disappearance of the species with affinity for binding detergents coincides with the slowest of the two rate-limiting steps detected in the refolding pathway of mAAT. Limited proteolysis studies indicate that the overall structure of the detergent-bound mAAT resembles that of the protein in a complex with GroEL. The mAAT folding intermediates trapped in the presence of detergents can resume reactivation either upon dilution of the detergent below its CMC or by adding beta-cyclodextrin. Thus, isolation of otherwise transient productive folding intermediates for further characterization is possible through the use of detergents.  相似文献   

17.
The proline transport system of membrane vesicles from Escherichia coli was inactivated by a low concentration of detergents such as deoxycholate, dodecyl sulfate and Triton X-100. The addition of a large amount of bovine serum albumin to membrane vesicles which had been treated with one of these detergents resulted in the restoration of the proline transport activity. The restoration of the transport activity by bovine serum albumin was most remarkable with the deoxycholate-inactivated membrane vesicle. 80% inactivation of the transport system with 0.005% deoxycholate was completely overcome by the addition of albumin. The degree of restoration was dependent on the concentration of albumin. Although albumin stimulated the proline transport activity itself, the stimulatory effect could not account for the restoration transport activity. The binding of deoxy[14C]cholate to the membrane vesicle was roughly proportional to the amount of detergent added. Deoxycholate once bound to the membrane vesicle was removed almost completely by the incubation with albumin. It is concluded that the removal of detergent from the membrane vesicle by bovine serum albumin results in the restoration of the proline transportactivity.  相似文献   

18.
We studied the effect of detergents on the binding of amanitin to RNA polymerase and on enzymatic activity. SDoS, Sarkosyl and deoxycholate were most inhibitory. Cholate and non-ionic detergents were less inhibitory. Evidence is presented that Sarkosyl inhibits chain elongation. The inhibition of amanitin binding was most influenced by the hydrophilicity of the detergent.  相似文献   

19.
The esterase activity of rat urinary kallikrein is increased up to fourfold by the anionic detergent, deoxycholate and the nonionic detergents, Triton X-100, Lubrol PX, and Brij 58. The cationic detergents, benzyltriphenylphosphonium chloride and cetyltri-methylammonium bromide, inhibit kallikrein activity. Certain trypsin inhibitors stimulate kallikrein activity but this stimulation is not observed when kallikrein is preincubated with deoxycholate. In addition, deoxycholate weakens the inhibition of kallikrein activity by Trasylol. Deoxycholate-induced conformational changes of kallikrein are noted by a change in circular dichroism spectra in the far and near ultraviolet region. A maximal change of ellipticity at 275 nm suggests binding of deoxycholate to kallikrein at or around the tyrosine residue(s) or changes in the microenvironment of these residue(s).  相似文献   

20.
The ion-gating ability and the protein electrophoretic band patterns of the acetylcholine receptor from Torpedo californica electroplax were examined after receptor-enriched membrane vesicles were progressively heated. The ion translocation function was lost over a temperature range of 40-55 degrees C. Previous results have shown that the stoichiometry of alpha-bungarotoxin binding is not affected by these temperatures, although bound toxin reversibly dissociates within this temperature range, and that toxin binding is irreversibly lost at somewhat higher temperatures [Soler, G., Farach, M.C., Farach, H. A., Jr., Mattingly, J.R., Jr., & Martinez-Carrion, M. (1983) Arch. Biochem. Biophys. 225, 872]. Thermal gel analysis [Lysko, K. A., Carlson, R., Taverna, R., Snow, J., & Brandts, J.F. (1981) Biochemistry 20, 5570], a sodium dodecyl sulfate-polyacrylamide gel electrophoretic procedure which detects thermally induced aggregation of the components of multimeric systems, was applied to heated acetylcholine receptor enriched membranes. This technique suggests two structural domains susceptible to thermal perturbation within the receptor molecule, one consisting of the Mr 50 000 and the two Mr 40 000 subunits and the other consisting of the Mr 60 000 and 65 000 subunits. Heat disrupts molecular events linking agonist binding with ion-channel opening in the acetylcholine receptor molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号