首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells infected with mammalian reoviruses contain phase-dense inclusions, called viral factories, in which viral replication and assembly are thought to occur. The major reovirus nonstructural protein mu NS forms morphologically similar phase-dense inclusions when expressed in the absence of other viral proteins, suggesting it is a primary determinant of factory formation. In this study we examined the localization of the other major reovirus nonstructural protein, sigma NS. Although sigma NS colocalized with mu NS in viral factories during infection, it was distributed diffusely throughout the cell when expressed in the absence of mu NS. When coexpressed with mu NS, sigma NS was redistributed and colocalized with mu NS inclusions, indicating that the two proteins associate in the absence of other viral proteins and suggesting that this association may mediate the localization of sigma NS to viral factories in infected cells. We have previously shown that mu NS residues 1 to 40 or 41 are both necessary and sufficient for mu NS association with the viral microtubule-associated protein mu 2. In the present study we found that this same region of micro NS is required for its association with sigma NS. We further dissected this region, identifying residues 1 to 13 of mu NS as necessary for association with sigma NS, but not with mu 2. Deletion of sigma NS residues 1 to 11, which we have previously shown to be required for RNA binding by that protein, resulted in diminished association of sigma NS with mu NS. Furthermore, when treated with RNase, a large portion of sigma NS was released from mu NS coimmunoprecipitates, suggesting that RNA contributes to their association. The results of this study provide further evidence that mu NS plays a key role in forming the reovirus factories and recruiting other components to them.  相似文献   

2.
Reovirus replication occurs in the cytoplasm of infected cells and culminates in the formation of crystalline arrays of progeny virions within viral inclusions. Two viral nonstructural proteins, sigma NS and micro NS, and structural protein sigma 3 form protein-RNA complexes early in reovirus infection. To better understand the minimal requirements of viral inclusion formation, we expressed sigma NS, mu NS, and sigma 3 alone and in combination in the absence of viral infection. In contrast to its concentration in inclusion structures during reovirus replication, sigma NS expressed in cells in the absence of infection is distributed diffusely throughout the cytoplasm and does not form structures that resemble viral inclusions. Expressed sigma NS is functional as it complements the defect in temperature-sensitive, sigma NS-mutant virus tsE320. In both transfected and infected cells, mu NS is found in punctate cytoplasmic structures and sigma 3 is distributed diffusely in the cytoplasm and the nucleus. The subcellular localization of mu NS and sigma 3 is not altered when the proteins are expressed together or with sigma NS. However, when expressed with micro NS, sigma NS colocalizes with mu NS to punctate structures similar in morphology to inclusion structures observed early in viral replication. During reovirus infection, both sigma NS and mu NS are detectable 4 h after adsorption and colocalize to punctate structures throughout the viral life cycle. In concordance with these results, sigma NS interacts with mu NS in a yeast two-hybrid assay and by coimmunoprecipitation analysis. These data suggest that sigma NS and mu NS are the minimal viral components required to form inclusions, which then recruit other reovirus proteins and RNA to initiate viral genome replication.  相似文献   

3.
Progeny virions of mammalian reoviruses are assembled in the cytoplasm of infected cells at discrete sites termed viral inclusions. Studies of temperature-sensitive (ts) mutant viruses indicate that nonstructural protein sigmaNS and core protein mu2 are required for synthesis of double-stranded (ds) RNA, a process that occurs at sites of viral assembly. We used confocal immunofluorescence microscopy and ts mutant reoviruses to define the roles of sigmaNS and mu2 in viral inclusion formation. In cells infected with wild-type (wt) reovirus, sigmaNS and mu2 colocalize to large, perinuclear structures that correspond to viral inclusions. In cells infected at a nonpermissive temperature with sigmaNS-mutant virus tsE320, sigmaNS is distributed diffusely in the cytoplasm and mu2 is contained in small, punctate foci that do not resemble viral inclusions. In cells infected at a nonpermissive temperature with mu2-mutant virus tsH11.2, mu2 is distributed diffusely in the cytoplasm and the nucleus. However, sigmaNS localizes to discrete structures in the cytoplasm that contain other viral proteins and are morphologically indistinguishable from viral inclusions seen in cells infected with wt reovirus. Examination of cells infected with wt reovirus over a time course demonstrates that sigmaNS precedes mu2 in localization to viral inclusions. These findings suggest that viral RNA-protein complexes containing sigmaNS nucleate sites of viral replication to which other viral proteins, including mu2, are recruited to commence dsRNA synthesis.  相似文献   

4.
Reovirus replication and assembly are thought to occur within cytoplasmic inclusion bodies, which we call viral factories. A strain-dependent difference in the morphology of these structures reflects more effective microtubule association by the mu2 core proteins of some viral strains, which form filamentous factories, than by those of others, which form globular factories. For this report, we identified and characterized another strain-dependent attribute of the factories, namely, the extent to which they colocalized with conjugated ubiquitin (cUb). Among 16 laboratory strains and field isolates, the extent of factory costaining for cUb paralleled factory morphology, with globular strains exhibiting higher levels by far. In reassortant viruses, factory costaining for cUb mapped primarily to the mu2-encoding M1 genome segment, although contributions by the lambda3- and lambda2-encoding L1 and L2 genome segments were also evident. Immunoprecipitations revealed that cells infected with globular strains contained higher levels of ubiquitinated mu2 (Ub-mu2). In M1-transfected cells, cUb commonly colocalized with aggregates formed by mu2 from globular strains but not with microtubules coated by mu2 from filamentous strains, and immunoprecipitations revealed that mu2 from globular strains displayed higher levels of Ub-mu2. Allelic changes at mu2 residue 208 determined these differences. Nocodazole treatment of cells infected with filamentous strains resulted in globular factories that still showed low levels of costaining for cUb, indicating that higher levels of costaining were not a direct result of decreased microtubule association. The factories of globular strains, or their mu2 proteins expressed in transfected cells, were furthermore shown to gain microtubule association and to lose colocalization with cUb when cells were grown at reduced temperature. From the sum of these findings, we propose that mu2 from globular strains is more prone to temperature-dependent misfolding and as a result displays increased aggregation, increased levels of Ub-mu2, and decreased association with microtubules. Because so few of the viral strains formed factories that were regularly associated with ubiquitinated proteins, we conclude that reovirus factories are generally distinct from cellular aggresomes.  相似文献   

5.
Cells infected with mammalian orthoreoviruses contain large cytoplasmic phase-dense inclusions believed to be the sites of viral replication and assembly, but the morphogenesis, structure, and specific functions of these "viral factories" are poorly understood. Using immunofluorescence microscopy, we found that reovirus nonstructural protein microNS expressed in transfected cells forms inclusions that resemble the globular viral factories formed in cells infected with reovirus strain type 3 Dearing from our laboratory (T3D(N)). In the transfected cells, the formation of microNS large globular perinuclear inclusions was dependent on the microtubule network, as demonstrated by the appearance of many smaller microNS globular inclusions dispersed throughout the cytoplasm after treatment with the microtubule-depolymerizing drug nocodazole. Coexpression of microNS and reovirus protein micro2 from a different strain, type 1 Lang (T1L), which forms filamentous viral factories, altered the distributions of both proteins. In cotransfected cells, the two proteins colocalized in thick filamentous structures. After nocodazole treatment, many small dispersed globular inclusions containing microNS and micro2 were seen, demonstrating that the microtubule network is required for the formation of the filamentous structures. When coexpressed, the micro2 protein from T3D(N) also colocalized with microNS, but in globular inclusions rather than filamentous structures. The morphology difference between the globular inclusions containing microNS and micro2 protein from T3D(N) and the filamentous structures containing microNS and micro2 protein from T1L in cotransfected cells mimicked the morphology difference between globular and filamentous factories in reovirus-infected cells, which is determined by the micro2-encoding M1 genome segment. We found that the first 40 amino acids of microNS are required for colocalization with micro2 but not for inclusion formation. Similarly, a fusion of microNS amino acids 1 to 41 to green fluorescent protein was sufficient for colocalization with the micro2 protein from T1L but not for inclusion formation. These observations suggest a functional difference between microNS and microNSC, a smaller form of the protein that is present in infected cells and that is missing amino acids from the amino terminus of microNS. The capacity of microNS to form inclusions and to colocalize with micro2 in transfected cells suggests a key role for microNS in forming viral factories in reovirus-infected cells.  相似文献   

6.
Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly.  相似文献   

7.
We have recently shown that the avian reovirus non-structural protein microNS forms cytoplasmic inclusions in transfected cells and recruits sigmaNS to these structures. In the present study we further demonstrate that microNS mediates the association of the major core protein lambdaA, but not of sigmaA or sigmaC, with inclusions, indicating that the recruitment of viral proteins into avian reovirus factories has specificity. Thus, some proteins appear to be initially recruited to factories by association with microNS, whereas others are recruited subsequently through interaction with as-yet-unknown factors. We next used metabolic pulse-chase radiolabeling combined with cell fractionation and antibody immunoprecipitation to study the recruitment of newly synthesized viral polypeptides into viral factories and virus particles. The results of this combined approach revealed that avian reovirus morphogenesis is a complex and temporally controlled process that takes place exclusively within globular viral factories that are not microtubule-associated. Our findings further suggest that cores are assembled within the first 30 minutes after the synthesis of their polypeptide components, and that reovirion morphogenesis is completed over the next 30 minutes by the subsequent addition of outer capsid proteins.  相似文献   

8.
Cells infected with mammalian reoviruses often contain large perinuclear inclusion bodies, or "factories," where viral replication and assembly are thought to occur. Here, we report a viral strain difference in the morphology of these inclusions: filamentous inclusions formed in cells infected with reovirus type 1 Lang (T1L), whereas globular inclusions formed in cells infected with our laboratory's isolate of reovirus type 3 Dearing (T3D). Examination by immunofluorescence microscopy revealed the filamentous inclusions to be colinear with microtubules (MTs). The filamentous distribution was dependent on an intact MT network, as depolymerization of MTs early after infection caused globular inclusions to form. The inclusion phenotypes of T1L x T3D reassortant viruses identified the viral M1 genome segment as the primary genetic determinant of the strain difference in inclusion morphology. Filamentous inclusions were seen with 21 of 22 other reovirus strains, including an isolate of T3D obtained from another laboratory. When the mu2 proteins derived from T1L and the other laboratory's T3D isolate were expressed after transfection of their cloned M1 genes, they associated with filamentous structures that colocalized with MTs, whereas the mu2 protein derived from our laboratory's T3D isolate did not. MTs were stabilized in cells infected with the viruses that induced filamentous inclusions and after transfection with the M1 genes derived from those viruses. Evidence for MT stabilization included bundling and hyperacetylation of alpha-tubulin, changes characteristically seen when MT-associated proteins (MAPs) are overexpressed. Sequencing of the M1 segments from the different T1L and T3D isolates revealed that a single-amino-acid difference at position 208 correlated with the inclusion morphology. Two mutant forms of mu2 with the changes Pro-208 to Ser in a background of T1L mu2 and Ser-208 to Pro in a background of T3D mu2 had MT association phenotypes opposite to those of the respective wild-type proteins. We conclude that the mu2 protein of most reovirus strains is a viral MAP and that it plays a key role in the formation and structural organization of reovirus inclusion bodies.  相似文献   

9.
Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsid proteins (VP5 and VP7), within VIBs in co-transfected or infected cells. Further co-immunoprecipitation analysis confirmed that NS80 could interact with each core protein respectively. In addition, we found that newly synthesized viral RNAs co-localized with VIBs. Furthermore, time-course analysis of viral structural proteins expression showed that the expression of NS80 was detected first, followed by the detection of inner shell protein VP3, and then of other inner-capsid proteins, suggesting that VIBs were essential for the formation of viral core frame or progeny virion. Moreover, knockdown of NS80 by shRNA not only inhibited the expression of aquareovirus structural proteins, but also inhibited viral infection. These results indicated that NS80-based VIBs were formed at earlier stage of infection, and NS80 was able to coordinate the expression of viral structural proteins and viral replication.  相似文献   

10.
11.
Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP proteins formed hollow intranuclear shells around the inclusions. Later, nuclei had irregular outlines and were virtually free of ADV products. In these cells, inclusions of viral DNA with or without associated NS protein were embedded in cytoplasmic VP protein. These findings implied that ADV replication within an infected cell is regulated spatially as well as temporally.  相似文献   

12.
13.
14.
H W Virgin  th  M A Mann  B N Fields    K L Tyler 《Journal of virology》1991,65(12):6772-6781
Thirteen newly isolated monoclonal antibodies (MAbs) were used to study relationships between reovirus outer capsid proteins sigma 3, mu 1c, and lambda 2 (core spike) and the cell attachment protein sigma 1. We focused on sigma 1-associated properties of serotype specificity and hemagglutination (HA). Competition between MAbs revealed two surface epitopes on mu 1c that were highly conserved between reovirus serotype 1 Lang (T1L) and serotype 3 Dearing (T3D). There were several differences between T1L and T3D sigma 3 epitope maps. Studies using T1L x T3D reassortants showed that primary sequence differences between T1L and T3D sigma 3 proteins accounted for differences in sigma 3 epitope maps. Four of 12 non-sigma 1 MAbs showed a serotype-associated pattern of binding to 25 reovirus field isolates. Thus, for reovirus field isolates, different sigma 1 proteins are associated with preferred epitopes on other outer capsid proteins. Further evidence for a close structural and functional interrelationship between sigma 3/mu 1c and sigma 1 included (i) inhibition by sigma 3 and mu 1c MAbs of sigma 1-mediated HA, (ii) enhancement of sigma 1-mediated HA by proteolytic cleavage of sigma 3 and mu 1c, and (iii) genetic studies demonstrating that sigma 1 controlled the capacity of sigma 3 MAbs to inhibit HA. These data suggest that (i) epitopes on sigma 3 and mu 1c lie in close proximity to sigma 1 and that MAbs to these epitopes can modulate sigma 1-mediated functions, (ii) these spatial relationships have functional significance, since removal of sigma 3 and/or cleavage of mu 1c to delta can enhance sigma 1 function, (iii) in nature, the sigma 1 protein places selective constraints on the epitope structure of the other capsid proteins, and (iv) viral susceptibility to antibody action can be determined by genes other than that encoding an antibody's epitope.  相似文献   

15.
16.
17.
Antiviral immunity requires recognition of viral pathogens and activation of cytotoxic and Th cells by innate immune cells. In this study, we demonstrate that hepatitis C virus (HCV) core and nonstructural protein 3 (NS3), but not envelope 2 proteins (E2), activate monocytes and myeloid dendritic cells (DCs) and partially reproduce abnormalities found in chronic HCV infection. HCV core or NS3 (not E2) triggered inflammatory cytokine mRNA and TNF-alpha production in monocytes. Degradation of I-kappa B alpha suggested involvement of NF-kappa B activation. HCV core and NS3 induced production of the anti-inflammatory cytokine, IL-10. Both monocyte TNF-alpha and IL-10 levels were higher upon HCV core and NS3 protein stimulation in HCV-infected patients than in normals. HCV core and NS3 (not E2) inhibited differentiation and allostimulatory capacity of immature DCs similar to defects in HCV infection. This was associated with elevated IL-10 and decreased IL-2 levels during T cell proliferation. Increased IL-10 was produced by HCV patients' DCs and by core- or NS3-treated normal DCs, while IL-12 was decreased only in HCV DCs. Addition of anti-IL-10 Ab, not IL-12, ameliorated T cell proliferation with HCV core- or NS3-treated DCs. Reduced allostimulatory capacity in HCV core- and NS3-treated immature DCs, but not in DCs of HCV patients, was reversed by LPS maturation, suggesting more complex DC defects in vivo than those mediated by core or NS3 proteins. Our results reveal that HCV core and NS3 proteins activate monocytes and inhibit DC differentiation in the absence of the intact virus and mediate some of the immunoinhibitory effects of HCV via IL-10 induction.  相似文献   

18.
Physical and chemical characterization of an avian reovirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
  相似文献   

19.
The 144-kDa lambda2 protein is a structural component of mammalian reovirus particles and contains the guanylyltransferase activity involved in adding 5' caps to reovirus mRNAs. After incubation of reovirus T3D core particles at 52 degrees C, the lambda2 protein became sensitive to partial protease degradation. Sequential treatments with heat and chymotrypsin caused degradation of a C-terminal portion of lambda2, leaving a 120K core-associated fragment. The four other proteins in cores--lambda1, lambda3, mu2, and sigma2--were not affected by the treatment. Purified cores with cleaved lambda2 were subjected to transmission cryoelectron microscopy and image reconstruction. Reconstruction analysis demonstrated that a distinctive outer region of lambda2 was missing from the modified cores. The degraded region of lambda2 corresponded to the one that contacts the base of the sigma1 protein fiber in reovirus virions and infectious subvirion particles, suggesting that the sigma1-binding region of lambda2 is near its C terminus. Cores with cleaved lambda2 were shown to retain all activities required to transcribe and cap reovirus mRNAs, indicating that the C-terminal region of lambda2 is dispensable for those functions.  相似文献   

20.
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号