首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The stability of solvent production by Clostridium acetobutylicum has been studied in continuous single-stage and two-stage fermentations. At low dilution rates, metabolic oscillations resulting from product inhibition have been observed especially in the case of fermentations controlled by product accumulation. A second type of instability also observed in product-controlled fermentations, but not in fermentations controlled by nitrogen limitation, was a long-term metabolic drift towards acid production. This acid drift has been shown to be identical to the phenomenon of culture degeneration occurring upon subculturing in batch fermentation. In addition, it was found that acid drift could be reversed by decreases in pH, temperature and dilution rate, by growth limitation in nitrogen-deficient conditions and by the addition of butyric and acetic acids. The existence of two distinct mechanisms, a short-term control (shift) and a long-term control (drift), both triggered by the same physiological conditions, is proposed in the regulation of acid and solvent production.  相似文献   

2.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

3.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

4.
Kinetic studies are presented for the growth and fermentation of the yeast Pichia stipitis with xylose as the carbon source. Ethanol is produced from xylose under anaerobic as well as under oxygen-limiting conditions but only at dissolved oxygen concentrations up to 3 mumol/L Maximum yields and production rates were obtained under oxygen-limiting conditions, where the xylose metabolism may be considered to be consisted of three different components (assimilation, respiration, fermentation). The contribution of each pathway is determined by the availability of oxygen and the energy yield of each pathway. In order to describe the course of oxygen-limited fermentations, a mathematical model has been developed with the assumption that growth is coupled to the energy production. The resulting model requires only four independent parameters (Y(x/O(2) ), Y(ATP) (max), m(ATP), and P/O). These parameters were estimated on the basis of eight separate batch fermentations.  相似文献   

5.
Summary Zymomonas mobilis UQM 2716 was grown anaerobically in continuous culture (D = 0.1/h; 30° C) 3nder glucose or nitrogen limitation at pH 6.5 or 4.0. The rates of glucose consumption and ethanol production were lowest during glucose-limited growth at pH 6.5, but increased during growth at pH 4.0 or under nitrogen limitation, and were highest during nitrogen-limited growth at pH 4.0. The uncoupling agent CCCP substantially increased the rate of glucose consumption by glucose-limited cultures at pH 6.5, but had much less effect at pH 4.0. Washed cells also metabolised glucose rapidly, irrespective of the conditions under which the original cultures were grown, and the rates were variably increased by low pH and CCCP. Broken cells exhibited substantial ATPase activity, which was increased by growth at low pH. It was concluded that the fermentation rates of cultures growing under glucose or nitrogen limitation at pH 6.5, or under glucose limitation at pH 4.0, are determined by the rate at which energy is dissipated by various cellular activities (including growth, ATP-dependent proton extrusion for maintenance of the protonmotive force and the intracellular pH, and an essentially constitutive ATP-wasting reaction that only operates in the presence of excess glucose). During growth under nitrogen limitation at pH 4.0 the rate of energy dissipation is sufficiently high for the fermentation rate to be determined by the inherent catalytic activity of the catabolic pathway.Abbreviations CCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - qG rate of glucose consumption (g glucose/g dry wt cells/h) - qE rate of ethanol production (g ethanol/g dry wt cells/h) - Y growth yield (g dry wt cells/g glucose) - D dilution rate Offprint requests to: C. W. Jones  相似文献   

6.
The changes in growth kinetics in aerobic batch cultures of Klebsiella pneumoniae were followed by measurements of extracellular metabolites, rates of gas exchange, dissolved oxygen tension, pH, and carbon balance at all stages of growth. When the initial growth-limiting glucose concentration in media without pH control was increased from 1.0 g carbon L(-1) to 2.2 g carbon L(-1), the number of different, mainly acidic, extracellular metabolites of glucose at the end of exponential growth increased, while the proportion of acetate decreased. During the postexponential growth phase, the extracellular metabolites were oxidized, resulting in an increasing complexity of changes in pH, gas exchange, and dissolved oxygen tension with increasing initial substrate concentration. All these parameters showed concomitant stepwise changes. This pattern was independent of the dissolved oxygen tension in the range 30-200 muM. When pH was kept constant, the number, slope, and relative magnitude of the steps in gas exchange and dissolved oxygen tension were pH-dependent, being most complex at low pH. Detailed carbon balances showed that 20% of the initial glucose was converted into extracellular metabolites at the end of exponential growth at neutral pH. In the postexponential phase, pyruvate (2%) was reoxidized first followed by acetate (13%). The observed molar growth yield coefficient (Y(ATP)) was 8.4 if the transitory occurrence of pyruvate and acetate was accounted for, and 6.4 if it was neglected. The corrected observed molar growth yield coefficient (Y'(ATP)) was 9.4 and compared well with the true molar growth yield coefficient (Y(Max) (ATP)), which was found to be 11.0. Specific in situ respiration rates of the exponential growth phase of cultures grown at different controlled pH values compared well with in situ values for energy-limited chemostat grown cells at the same growth rates, suggesting that growth in the batch culture was energy-limited throughout the exponential growth phase. This view was supported by low levels of intracellular glycogen and exopolysaccharides of all cultures, by the value of Y'(ATP) of 9.4, and by a constant specific production rate of the extracellular metabolites throughout exponential growth. It was concluded that even under strictly aerobic conditions, control of pH is as important as control of dissolved oxygen tension during growth of enterobacteriaceae in batch cultures.  相似文献   

7.
Fermentation of xylose by Clostridium thermosaccharolyticum was studied in batch and continuous culture in which the limiting nutrient was either xylose, phosphate, or ammonia. Transient results obtained in continuous cultures with batch grown inoculum and progressively higher feed substrate concentrations exhibited ethanol selectivities (moles ethanol/moles other products) in excess of 11. The hypothesis that this high ethanol selectivity was a general response to mineral nutrient limitation was tested but could not be supported. Growth and substrate consumption were related by the equation q(s)(1 - Y(x) (c))G(ATP) = (mu/Y(ATP) (max)) + m, with q(s) the specific rate of xylose consumption (moles xylose/hour . g cells), Y(x) (c) the carbon based cell yield (g cell carbon/g substrate carbon), G(ATP) the ATP gain (moles ATP produces/mol substrate catabolized), mu the specific growth rate (1/h), Y(ATP) (max) the ATP-based cell yield (g cells/mol ATP), and m the maintenance coefficient (moles ATP/hour . g cells). Y(ATP) (max) was found to be 11.6 g cells/mol ATP, and m 9.3 mol ATP/hour . g cells for growth on defined medium. Different responses to nutrient limitation were observed depending on the mode of cultivation. Batch and immobilized cell continuous cultures decreased G(ATP) by initiating production of the secondary metabolites, propanediol, and in some cases, D-lactate; in addition, batch cultures increased the fractional allocation of ATP to maintenance and/or wastage. Nitrogen-limited continuous free-cell cultures maintained a constant cell yield, whereas phosphate-limited continuous free-cell cultures did not. In the case of phosphate limitation, the decreased ATP demand associated with the lowered cell yield was accompanied by an increased rate of ATP consumption for maintenance and/or wastage. Neither nitrogen or phosphorus-limited continuous free-cell cultures exhibited an altered G(ATP) in response to mineral nutrient limitation, and neither produced secondary metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
The diseases caused for Clostridium perfringens are generically called enterotoxemias because toxins produced in the intestine may be absorbed into the general circulation. C. perfringens type B, grown in batch fermentation, produced toxins used to obtain veterinary vaccines. Glucose in concentrations of 1.4–111.1 mM was used to define the culture medium. The minimum concentration for a satisfactory production of vaccines against clostridial diseases was 55.6 mM. Best results were brought forth by meat and casein peptones, both in the concentration 5.0 g l?1 in combination with glucose and a culture pH maintained at 6.5 throughout the fermentation process. The production of lactic, acetic and propionic organic acids was observed. Ethanol was the metabolite produced in the highest concentration when cultures maintained steady pH of 6.5 with exception of cultures with initial glucose concentration of 1.4 mM, where the highest production was of propionic acid. Maximal cell concentration and the highest toxin title concomitantly low yield coefficient to organic acids and ethanol were obtained using basal medium containing 111.1 mM glucose under a controlled pH culture (pH) 6.5 in batch fermentations of C. perfringens type B. These data contribute to improve process for industrial toxin production allowing better condition to produce a toxoid vaccine.  相似文献   

9.
Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h-1) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci.  相似文献   

10.
Intracellular adenosine-5'-triphosphate (ATP) levels were measured in a metabolically engineered Zymomonas mobilis over the course of batch fermentations of glucose and xylose mixtures. Fermentations were conducted over a range of pH (5-6) in the presence of varying initial amounts of acetic acid (0-8 g/L) using a 10% (w/v) total sugar concentration (glucose only, xylose only, or 5% glucose/5% xylose mixture). Over the design space investigated, ethanol process yields varied between 56.6% and 92.3% +/- 1.3% of theoretical, depending upon the test conditions. The large variation in process yields reflects the strong effect pH plays in modulating the inhibitory effect of acetic acid on fermentation performance. A corresponding effect was observed on maximum cellular specific growth rates, with the rates varying between a low of 0.15 h(-1) observed at pH 5 in the presence of 8 g/L acetic acid to a high of 0.32 +/- 0.02 h(-1) obtained at pH 5 or 6 when no acetic acid was initially present. While substantial differences were observed in intracellular specific ATP concentration profiles depending upon fermentation conditions, maximum intracellular ATP accumulation levels varied within a relatively narrow range (1.5-3.8 mg ATP/g dry cell mass). Xylose fermentations produced and accumulated ATP at much slower rates than mixed sugar fermentations (5% glucose, 5% xylose), and the ATP production and accumulation rates in the mixed sugar fermentations were slightly slower than in glucose fermentations. Results demonstrate that higher levels of acetic acid delay the onset and influence the extent of intracellular ATP accumulation. ATP production and accumulation rates were most sensitive to acetic acid at lower values of pH.  相似文献   

11.
Summary An open-loop, on-off control system using the dissolved oxygen level to control a glucose feed was used in a study of growth and production of protease by Bacillus subtilis CNIB 8054. With this system, both glucose and oxygen were controlled at low concentrations. In batch fermentations, protease activity in the fermentation broth was maximum when growth had stopped. During oxygen-controlled, glucose fed-batch fermentations, growth and the production of protease activity continued during glucose feeding. Oxygen-controlled, glucose fed-batch fermentations produced more protease activity than batch fermentations, depending upon the set point for dissolved oxygen. These results indicate that control of glucose and oxygen concentrations can result in improvements in protease production.  相似文献   

12.
Bifidobacterium longum ATCC 15707 cell production was studied in MRS medium supplemented with whey permeate (MRS-WP) during free-cell batch fermentations and continuous immobilized-cell cultures. Very high populations were measured after 12 h batch cultures in MRS-WP medium controlled at pH 5.5 (1.7+/-0.5x10(10) cfu/ml), approximately 2-fold higher than in non-supplemented MRS. Our study showed that WP is a low-cost source of lactose and other components that can be used to increase bifidobacteria cell production in MRS medium. Continuous fermentation in MRS-WP of B. longum immobilized in gellan gum gel beads produced the highest cell concentrations in the effluent (4.9+/-0.9x10(9) cfu/ml) at a dilution rate (D) of 0.5 h(-1). However, maximal volumetric productivity (6.9+/-0.4x10(9) cfu ml(-1)h(-1)) during continuous cultures was obtained at D =2.0 h(-1), and was approximately 9.5-fold higher than during free-cell batch cultures at an optimal pH of 5.5 (7.2x10(8) cfu ml(-1)h(-1)).  相似文献   

13.
To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventogenesis. Effects of the adhE1-ctfAB complementation of M5 were studied by batch fermentations under various pH and glucose concentrations, and by flux balance analysis using a genome-scale metabolic model for this organism. The metabolically engineered M5(pIMP1E1AB) strain was able to produce 154 mM butanol with 9.9 mM acetone at pH 5.5, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.84, which is much higher than that (0.57 at pH 5.0 or 0.61 at pH 5.5) of the wild-type strain ATCC 824. Unlike for C. acetobutylicum ATCC 824, a higher level of acetate accumulation was observed during fermentation of the M5 strain complemented with adhE1 and/or ctfAB. A plausible reason for this phenomenon is that the cellular metabolism was shifted towards acetate production to compensate reduced ATP production during the largely growth-associated butanol formation by the M5(pIMP1E1AB) strain.  相似文献   

14.
Summary The effects of organic and inorganic nitrogen combinations on cell growth, solvent production and nitrogen utilization by Clostridium acetobutylicum ATCC 824 was studied in batch fermentations. Fermentations in media with 10 mM glutamic acid, as the organic nitrogen source, and 0 mM to 10 mM ammonium chloride, as the inorganic nitrogen source had a solvent yield of 0.8 to 1.08 mmol solvent/mmol glucose used, with a slow fermentation rate (2 mmol solvent/l h-1). When media contained 20 mM or 30 mM glutamic acid as well as 2.5 to 7.5 mM ammonium chloride the fermentation rate increased (5.5 mmol/l h-1) while the solvent yield remained constant (0.86 to 0.96 mmol solvent/mmol glucose used). Total solvent production was higher in media containing 20 mM or 30 mM glutamic acid than with 10 mM glutamic acid.  相似文献   

15.
Lactobacillus brevis 3-A5 was isolated and expected to produce mannitol efficiently by regulating pH in batch and fed-batch fermentations. In 48 h batch fermentations with free and constant pH, the optimal pH for cell growth and mannitol production in the first 24 h of incubation was 5.5, whereas that for mannitol production in the second 24 h of incubation was 4.5. To achieve high cell density and mannitol yield simultaneously, a dual-stage pH control strategy was proposed based on the kinetic analysis of mannitol production. The pH value was controlled at 5.5 for the first 12 h of fermentation and subsequently shifted to 4.5 until the fermentation was completed. Under dual-stage pH control fermentation, a 103 g/L yield of mannitol with a volumetric production rate of 3.7 g/L/h was achieved after 28 h. The dual-stage pH control fed-batch fermentation strategy was further developed to improve mannitol yield, wherein the yield increased by 109 % to 215 g/L after 98 h of fermentation. This value is the highest yield of mannitol ever reported using L. brevis.  相似文献   

16.
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source.  相似文献   

17.
The ability to genetically alter the product-formation capabilities of Clostridium acetobutylicum is necessary for continued progress toward industrial production of the solvents butanol and acetone by fermentation. Batch fermentations at pH 4.5, 5.5, or 6.5 were conducted using C. acetobutylicum ATCC 824 (pFNK6). Plasmid pFNK6 contains a synthetic operon (the "ace operon") in which the three homologous acetone-formation genas (adc, ctfA, and ctfB) are transcribed from the adc promoter. The corresponding enzymes (acetoacetate decarboxylase and CoA-transferase) were best expressed in pH 4.5 fermentations. However, the highest levels of solvents were attained at pH 5.5. Relative to the plasmid-free control strain at pH 5.5, ATCC 824 (pFNK6) produced 95%, 37%, and 90% higher final concentrations of acetone, butanol, and ethanol, respectively; a 50% higher yield (g/g) of solvents on glucose; and a 22-fold lower mass of residual carboxylic acids. At all pH values, the acetone-formation enzymes were expressed earlier with ATCC 824 (pFNK6) than in control fermentations, leading to earlier induction of acetone formation. Furthermore, strain ATCC 824 (pFNK6) produced butanol significantly earlier in the fermentation and produced significant levels of solvents at pH 6.5. Only trace levels of solvents were produced by strain ATCC 824 at pH 6.5. Compared with ATCC 824, a plasmid-control strain containing a vector without the ace operon also produced higher levels of solvents [although lower than those of strain ATCC 824 (pFNK6)] and lower levels of acids. Strains containing plasmid-borne derivatives of the ace operon, in which either the acetoacetate decarboxylase or CoA-transferase alone were expressed at elevated levels, produced acids and solvents at levels similar to those of the plasmid-control strain. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
The production of a Bacillus cereus enterotoxin, measured as rabbit skin permeability factor (PF), in response to differences in glucose availability, pH, and dissolved oxygen tension was studied in a 1-liter batch fermentor system. Glucose had to be present for toxigenesis to occur. In uncontrolled fermentation an increasing inhibition of PF production and growth occurred as pH dropped occurred below 6.5. Optimum pH for toxigenesis was 7.0 to 7.5, and fermentations maintained at this level yielded 10- to 20-fold more PF than comparable uncontrolled fermentations. PF production was appreciably diminished at or below pH 6.0 and at or above pH 8.5. Peak PF titer was associated with a drop in acid output, and the titrant utilization profile could be used as an indication of this point. Productivity was greatest in the early exponential phase of growth and decreased to zero at the transition phase. Differences in dissolved oxygen tension affected both the maximum productivity early in the fermentation and the rate of its decrease as growth progressed. The optimum dissolved oxygen tension for toxigenesis was 0.002 atm, and the most rapid growth occurred at 0.10 atm. Productivity and growth were reduced under anerobic conditions, whereas a hyperoxic environment severely reduced productivity, but not growth. Postexponential-phase loss of toxic activity coincided with a rapid increase in cellular oxygen demand. Neither was inhibited by the presence of glucose. However, PF loss was completely prevented by stringent oxygen limitation. Extracellular proteolytic activity did not appear to be responsible for the loss of toxic activity.  相似文献   

19.
Summary When G. oxydans ATCC 621-H was grown in batch culture in a complex medium with glucose, ketogluconates were produced when the pH in the culture was maintained at 5.5. Without pH control gluconate was the only product of glucose oxidation, but at pH 5.5 the gluconate so produced was further oxidized to ketogluconates. Production of ketogluconates started when glucose was almost completely exhausted. It was shown that the actual glucose and gluconate concentrations in the culture do not determine the onset of ketogluconate formation during growth. Both 2 and 5 ketogluconate were produced. Addition of CaCO3 to the medium favored the production of 5 ketogluconate. However, under these conditions minor quantities of 2 ketogluconate were also formed. The sequential production of gluconate and ketogluconates from glucose was not only restricted to G. oxydans ATCC 621-H. A number of G. oxydans strains when grown under standard conditions in a pH controlled batch culture, all produced ketogluconates from glucose via an intermediate accumulation of gluconate. Although the ratios of the ketogluconates produced varied from strain to strain, all strains produced both 2 and 5 ketogluconate.  相似文献   

20.
The production of a Bacillus cereus enterotoxin, measured as rabbit skin permeability factor (PF), in response to differences in glucose availability, pH, and dissolved oxygen tension was studied in a 1-liter batch fermentor system. Glucose had to be present for toxigenesis to occur. In uncontrolled fermentation an increasing inhibition of PF production and growth occurred as pH dropped occurred below 6.5. Optimum pH for toxigenesis was 7.0 to 7.5, and fermentations maintained at this level yielded 10- to 20-fold more PF than comparable uncontrolled fermentations. PF production was appreciably diminished at or below pH 6.0 and at or above pH 8.5. Peak PF titer was associated with a drop in acid output, and the titrant utilization profile could be used as an indication of this point. Productivity was greatest in the early exponential phase of growth and decreased to zero at the transition phase. Differences in dissolved oxygen tension affected both the maximum productivity early in the fermentation and the rate of its decrease as growth progressed. The optimum dissolved oxygen tension for toxigenesis was 0.002 atm, and the most rapid growth occurred at 0.10 atm. Productivity and growth were reduced under anerobic conditions, whereas a hyperoxic environment severely reduced productivity, but not growth. Postexponential-phase loss of toxic activity coincided with a rapid increase in cellular oxygen demand. Neither was inhibited by the presence of glucose. However, PF loss was completely prevented by stringent oxygen limitation. Extracellular proteolytic activity did not appear to be responsible for the loss of toxic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号